ORIGINAL ARTICLE

Interplay of nitric oxide metabolites and markers of endothelial injury, inflammation, and vascular disease in the spectrum of advanced chronic kidney disease

Krzysztof Batko¹, Marcin Krzanowski¹, Agata Pietrzycka², Mariusz Gajda³, Paulina Dumnicka⁴, Danuta Fedak⁵, Paulina Gołasa¹, Karolina Wodziwodzka¹, Piotr Jaśkowski¹, Władysław Sulkowicz¹, Marek Kuźniewski¹, Jan A. Litwin⁵, Katarzyna Krzanowska¹

1 Chair and Department of Nephrology, Jagiellonian University Medical College, Kraków, Poland
2 Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
3 Chair and Department of Histology, Jagiellonian University Medical College, Kraków, Poland
4 Department of Medical Diagnostics, Jagiellonian University Medical College, Kraków, Poland
5 Department of Clinical Biochemistry, Jagiellonian University Medical College, Kraków, Poland

ABSTRACT

BACKGROUND Chronic kidney disease is linked to cardiovascular morbidity; therefore, relevant biomarkers are widely investigated.

AIMS We aimed to assess the relationship between nitric oxide (as measured by its metabolites, NOx), a key endothelial molecule, with markers of endothelial dysfunction, inflammation, antioxidant status, and mineral disorders as well as histologically assessed vascular calcification in uremic and hemodialysis patients with chronic kidney disease.

METHODS Plasma and serum samples were obtained from 62 patients with renal failure. NOx was assessed by the Griess method, while the other biomarkers were measured by the immunoenzymatic assay. Morphological analysis of arterial calcification was performed in a blinded, semiquantitative manner. Common carotid intima-media thickness and atherosclerotic plaques were assessed by ultrasonography.

RESULTS In the simple analysis, NOx levels correlated positively with the parameters of renal function, mineral metabolism, endothelial injury, and inflammation. NOx predicted carotid intima-media thickness in simple (P = 0.014) and multiple analysis (P = 0.036) adjusted for the Framingham risk score, C-reactive protein, serum creatinine, and parathormone. The occurrence of atherosclerotic plaques in the common carotid artery was correlated with higher NOx concentrations (P = 0.021).

CONCLUSIONS In chronic renal failure, NOx is associated with surrogate markers of atherosclerosis, even after adjustment for traditional cardiovascular risk factors, inflammation, and renal function, but not with the presence or grade of medial arterial calcification. Endothelial injury, inflammation, and mineral metabolism markers are associated with NOx levels, though a causal link requires further study.

INTRODUCTION Cardiovascular disease is the primary cause of morbidity, mortality, and years of life lost in Poland. Chronic kidney disease (CKD) is frequently complicated with cardiovascular morbidity, and in itself is an independent risk factor for cardiovascular disease. Endothelial dysfunction caused by imbalance of vasoactive molecules, oxidative stress, and
WHAT’S NEW?
Chronic kidney disease, particularly its advanced stages, is connected with severe vascular impairment and the associated deleterious sequelae. Both atherosclerosis and medial arterial calcification are processes that have been linked to clinical outcomes in renal failure populations. Recently, cardiovascular risk models have been developed; however, the idea of a biomarker panel dedicated for chronic kidney disease has only been partially explored. The present study provides an overview of new and established biomarkers of processes involved in vascular disease (ie, inflammation, mineral and bone disorder, endothelial injury), which is accompanied by ultrasonography assessments and semiquantitative morphological investigations on artery samples. This study of the relationships between these markers and/or mediators provides insight into the unique interplay occurring in chronic kidney disease, which is shown in the uremic and hemodialysis populations. Our data may serve as a benchmark for future studies that could aim to establish a cardiovascular risk model tailored to chronic renal failure.

inflammation\(^3,4\) is one of the initial events and an indicator of vascular pathology in cardiovascular complications of CKD. Impaired nitric oxide (NO) synthesis is a hallmark of vascular disease\(^5\); however, NO is highly reactive and has to be assessed indirectly through its relatively stable biologic metabolites (NOx), nitrite and nitrate, by a modified Griess assay.\(^6\) Nitric oxide homeostasis plays a crucial role in the pathobiology of the cardiovascular system.\(^7\) The offending processes in vascular injury are complex in CKD, therefore, establishing the interplay between disease-driving pathways (through a purported relationship between respective biomarkers) is important to develop a risk model for this population.

We examined the relationship between NOx and surrogate parameters of vascular disease as well as biochemical indicators of endothelial impairment, inflammation, antioxidant status, and mineral bone disease in uremic and hemodialysis patients with end-stage renal disease.

METHODS

Patients

The study population included consecutive patients with advanced CKD from a convenience sample at our university center. Sixty-two patients fulfilled the predefined inclusion criteria, namely, stage 5 CKD and planned first-time arteriovenous fistula (AVF) procedures. There were 35 men and 27 women with a mean (SD) age 63 (16) years. Clinical, imaging, biochemical, and morphological data were gathered in a cross-sectional fashion, and analyzed for 20 predialysis and 42 hemodialysis patients. Our reference population (for NOx measurements) included 44 healthy subjects (24 men and 20 women) with a mean (SD) age of 61 (10) years, mean (SD) body mass index of 27.2 (5.6) kg/m\(^2\), and mean (SD) creatinine level of 86 (16) µmol/l. This study is part of a concluded research initiative, and follows the design of our previous publications.\(^8\) We also estimated that the inclusion of 60 patients allows for 90% power to detect a correlation of moderate strength (rho = 0.4) at the significance level of 0.05. All patients provided written and informed consent prior to their recruitment. The Bioethics Committee of the Jagiellonian University approved the study.

Imaging

Ultrasonography was performed using the Acuson 128 XP/10 system (Acuson Corp., Mountain View, California, United States). An experienced, blinded operator examined common carotid artery intima-media thickness (CCA-IMT) bilaterally, using a linear 5/7 MHz probe in B mode. Assessment at 2 fixed (predefined) locations, respectively, 0.5 cm and 2 cm below CCA bifurcation on each side was performed during diastole. Data are reported as arithmetic means for both arteries in each patient. CCA-IMT measurements were taken outside the locations of possible atherosclerotic plaques. The atherosclerotic carotid plaque was defined as an echoic focal structure protruding into the lumen or focal wall thickening which is at least 50% greater than that of the surrounding vessel and is clearly different from the surroundings. No qualitative and quantitative analysis of atherosclerotic plaques was used.

Biochemistry

On the morning preceding the surgical procedure, patients underwent a complete medical examination. Shortly afterwards, following an overnight fast, venous blood was drawn from all patients and samples of plasma and serum were collected.

Specimens were kept at −70°C until analysis performed within 3 months. Plasma for biochemical analysis of oxidative activity was stored under recommended operating procedures; protected from light exposure, positioned on ice, centrifuged in a 2-hour time frame, aliquoted, and kept at −30°C for up to 1 month. Antioxidant capacity of plasma was assessed by a previously described method based on scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH).\(^3\) NOx were determined using the Griess assay, as reported previously:\(^7\) a reaction in which sulfanilamide and N (1-naphthyl)-ethylenediamine dihydrochloride in acidic medium (phosphoric acid) in combination with nitrates gives the azo dye, with maximum absorption at 540 nm. Spectrophotometric measurements were performed using a microplate reader, the Polar Star Omega (BMG Labtech, Ortenberg, Germany).

In all patients, selected biochemical parameters were measured, including creatinine, intact parathyroid hormone (PTH), total calcium (Ca) and phosphate (Pi), high-sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), PTX3, soluble tumor necrosis factor receptor 2 (sTNFR2), fibroblast growth factor 23
(FGF-23), osteopontin, osteoprotegerin, osteocalcin, DPPH, NOx, transforming growth factor β1 (TGF-β1), and thrombomodulin (TM).

Plasma/serum samples were assessed using an enzyme-linked immunosorbent assay microplates and an ELX808 automatic reader (BIO-TEK Instruments Inc., Winooski, Vermont, United States). The following commercial kits were applied: IL-6, pentraxin 3, sTNFR2, TGF-β1, TM (R&D Systems, Minneapolis, Minnesota, United States); osteoprotegerin (BioVendor, Brno, Czech Republic); osteopontin (R&D Systems, Minneapolis, Minnesota, United States); osteocalcin (Metra/Quidel, San Diego, California, United States) and FGF-23 (Immunotopics Int., San Clemente, California, United States).

Routine biochemical tests were carried out using automatic biochemical analyzers: Hitachi 917 (Hitachi, Japan) and Modular P (Roche Diagnostics, Mannheim, Germany). hs-CRP was assessed nephelometrically (Nephelometer BN II, Siemens Healthcare Diagnostics, Munich, Germany).

Histology The methodology adopted was described elsewhere. Reproducibility of calcification assessment and superior sensitivity of alizarin red over other histological staining methods are discussed therein. In 36 patients (22 on hemodialysis and 14 predialysis; 16 with NO levels below or equal to the median and 20 with NO levels above the median), radial artery samples were collected during AVF surgery. The samples were fixed in formalin, washed, frozen, and cut into cross-sections. The localization and extent of calcifications were assessed by 2 independent blinded observers. Microscopic imaging was performed using the Olympus DP-71 digital CCD camera coupled to Olympus BX-50 microscope (Olympus, Tokyo, Japan).

RESULTS There were no differences in demographic and cardiovascular risk factors, including smoking status and an established index of cardiovascular risk, in the recruited population of uremic (predialysis) patients and those already on hemodialysis (TABLE 1). In patients with NOx levels above the median, female sex was more common and renal function (serum creatinine) was more impaired than in those with NOx levels below or equal to the median (TABLE 1). This relationship between NOx and kidney function was further examined as a continuous variable: log-transformed NOx concentrations correlated positively with log(creatinine) (R = 0.32; P = 0.012).

When considering all patients, the median (interquartile range [IQR]) NOx concentration was 5.40 (4.52–6.99) µmol/l. The median (IQR) NOx concentration was 6.1 (5.0–7.4) µmol/l. A P value of less than 0.05 was considered significant. The Statistica 10 software (StatSoft, Tulsa, Oklahoma, United States) was used for computations.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hemodialysis (n = 42)</th>
<th>Uremia (n = 20)</th>
<th>P value</th>
<th>NOx ≤ median (n = 31)</th>
<th>NOx > median (n = 31)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean (SD)</td>
<td>61 (18)</td>
<td>67 (12)</td>
<td>0.3</td>
<td>64 (18)</td>
<td>62 (14)</td>
<td>0.3</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>24 (57)</td>
<td>11 (55)</td>
<td>0.9</td>
<td>22 (71)</td>
<td>13 (42)</td>
<td>0.9</td>
</tr>
<tr>
<td>Hemodialysis, n (%)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>20 (65)</td>
<td>22 (71)</td>
<td>0.6</td>
</tr>
<tr>
<td>Dialysis therapy duration, mo, median (IQR)</td>
<td>20 (4–48)</td>
<td>–</td>
<td>–</td>
<td>13 (4–32)</td>
<td>30 (6–64)</td>
<td>0.6</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>13 (31)</td>
<td>8 (40)</td>
<td>0.5</td>
<td>12 (39)</td>
<td>9 (29)</td>
<td>0.5</td>
</tr>
<tr>
<td>Dyslipidemia, n (%)</td>
<td>19 (45)</td>
<td>9 (45)</td>
<td>0.9</td>
<td>11 (35)</td>
<td>17 (55)</td>
<td>0.2</td>
</tr>
<tr>
<td>Current smoking, n (%)</td>
<td>11 (26)</td>
<td>6 (30)</td>
<td>0.8</td>
<td>11 (35)</td>
<td>6 (19)</td>
<td>0.1</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>34 (81)</td>
<td>19 (95)</td>
<td>0.1</td>
<td>25 (83)</td>
<td>28 (87)</td>
<td>0.6</td>
</tr>
<tr>
<td>BMI, kg/m², mean (SD)</td>
<td>24.6 (3.9)</td>
<td>26.4 (4.6)</td>
<td>0.06</td>
<td>24.5 (5)</td>
<td>24.8 (3.2)</td>
<td>0.8</td>
</tr>
<tr>
<td>Framingham risk score, %, median (IQR)</td>
<td>11 (6–22)</td>
<td>13 (8–21)</td>
<td>0.3</td>
<td>14 (6–22)</td>
<td>9 (7–20)</td>
<td>0.2</td>
</tr>
<tr>
<td>Serum creatinine, µmol/l, median (IQR)</td>
<td>470 (383–634)</td>
<td>315 (234–405)</td>
<td><0.001</td>
<td>385 (302–488)</td>
<td>454 (361–687)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Statistical analysis Numbers of patients (percentage of the group) are reported for categories and mean (SD) or median (interquartile range) for continuous variables, in accordance with sample distribution (assessed with the Shapiro–Wilk test). Contingency tables were analyzed using the χ² test. Comparisons between the groups were done with the t test or the Mann–Whitney test. Simple correlations were analyzed using the Pearson correlation coefficient, after log transformation of right-skewed variables. Multiple linear regression model was calculated using the prespecified predictors associated with cardiovascular risk, that is, the Framingham risk score, serum CRP, iPTH, and creatinine concentrations. A P value of less than 0.05 was considered significant. The Statistica 10 software (StatSoft, Tulsa, Oklahoma, United States) was used for computations.

TABLE 1 Demographic and clinical characteristics in patients predialysis (uremia) and on hemodialysis with respect to nitric oxide

Abbreviations: BMI, body mass index; IQR, interquartile range; NOx, nitric oxide (as indirectly measured through its metabolites)
The markers of inflammation, but not of antioxidant capacity, were higher among hemodialysis patients (Table 3) as compared to those predialysis. No association of NOx levels above and below or equal to the median with parameters of inflammation and antioxidant capacity was observed (Table 3). Log-transformed NOx concentrations correlated positively with log(sTNFR2) ($R = 0.28; P = 0.035$), suggesting a relationship between systemic inflammation and NOx changes.

Serum TM was significantly higher in patients undergoing hemodialysis and among patients with higher NOx levels (Table 4). Log-transformed NOx concentrations correlated positively with log(TM) ($R = 0.27; P = 0.045$).

We further assessed the relationship between NOx and vascular disease surrogate markers. In 39 patients who underwent CCA ultrasound, a positive correlation was found between log(NOx) and CCA-IMT ($R = 0.39; P = 0.014$ in a simple analysis) (Figure 1A) and it remained significant after adjustment for the Framingham risk score, parameters of renal function, etc.

Table 2

<table>
<thead>
<tr>
<th>Marker</th>
<th>Hemodialysis (n = 42)</th>
<th>Uremia (n = 20)</th>
<th>P value</th>
<th>NOx \leq median (n = 31)</th>
<th>NOx $> $median (n = 31)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPTH, pg/ml</td>
<td>278 (164–560)</td>
<td>294 (175–512)</td>
<td>0.9</td>
<td>279 (164–386)</td>
<td>289 (180–705)</td>
<td>0.4</td>
</tr>
<tr>
<td>Ca, mmol/l</td>
<td>2.21 (0.17)</td>
<td>2.23 (0.26)</td>
<td>0.6</td>
<td>2.17 (0.16)</td>
<td>2.26 (0.24)</td>
<td>0.1</td>
</tr>
<tr>
<td>Pi, mmol/l</td>
<td>1.60 (1.26–2.05)</td>
<td>1.37 (1.18–1.44)</td>
<td>0.06</td>
<td>1.35 (1.17–1.69)</td>
<td>1.56 (1.35–1.96)</td>
<td>0.05</td>
</tr>
<tr>
<td>Ca×Pi, mmol²/l²</td>
<td>3.60 (2.75–4.24)</td>
<td>2.94 (2.61–3.03)</td>
<td>0.04</td>
<td>2.88 (2.43–3.59)</td>
<td>3.59 (2.93–4.14)</td>
<td>0.001</td>
</tr>
<tr>
<td>FGF-23, RU/ml</td>
<td>2275 (754–10 558)</td>
<td>465 (280–1120)</td>
<td>0.002</td>
<td>706 (346–2234)</td>
<td>2276 (977–8208)</td>
<td>0.01</td>
</tr>
<tr>
<td>Osteopontin, ng/ml</td>
<td>355 (189–588)</td>
<td>213 (159–352)</td>
<td>0.03</td>
<td>282 (179–522)</td>
<td>341 (222–587)</td>
<td>0.2</td>
</tr>
<tr>
<td>Osteoprotegerin, pmol/l</td>
<td>8.13 (6.16–10.61)</td>
<td>6.59 (5.12–9.23)</td>
<td>0.1</td>
<td>7.13 (5.61–9.44)</td>
<td>8.37 (5.94–11.49)</td>
<td>0.2</td>
</tr>
<tr>
<td>Osteocalcin, ng/ml</td>
<td>51.1 (36.0–84.5)</td>
<td>38.6 (31.4–54.1)</td>
<td>0.09</td>
<td>40.0 (31.4–76.6)</td>
<td>52.7 (37.7–78.8)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Data are presented as median (interquartile range).

Abbreviations: Ca, calcium; FGF-23, fibroblast growth factor 23; iPTH, intact parathyroid hormone; Pi, phosphate; others, see Table 1

Table 3

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Hemodialysis (n = 42)</th>
<th>Uremia (n = 20)</th>
<th>P value</th>
<th>NOx \leq median (n = 31)</th>
<th>NOx $> $median (n = 31)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hs-CRP, mg/dl</td>
<td>9.73 (4.59–22.1)</td>
<td>3.56 (1.59–8.47)</td>
<td>0.02</td>
<td>7.95 (4.59–20.5)</td>
<td>4.80 (1.59–19.80)</td>
<td>0.3</td>
</tr>
<tr>
<td>IL-6, pg/ml</td>
<td>5.58 (2.81–9.25)</td>
<td>3.6 (2.31–5.17)</td>
<td>0.08</td>
<td>5.02 (2.83–9.36)</td>
<td>4.11 (0.24–6.16)</td>
<td>0.4</td>
</tr>
<tr>
<td>sTNFR2, pg/ml</td>
<td>16.2 (13.7–20)</td>
<td>11.6 (9.2–15.7)</td>
<td>0.003</td>
<td>14.7 (11–17)</td>
<td>15.6 (11.6–26.2)</td>
<td>0.2</td>
</tr>
<tr>
<td>PTX, ng/ml</td>
<td>1.85 (1.09–2.69)</td>
<td>0.8 (0.54–1.48)</td>
<td>0.01</td>
<td>1.41 (0.74–2.33)</td>
<td>1.56 (0.89–2.79)</td>
<td>0.7</td>
</tr>
<tr>
<td>DPPH scavenging, %</td>
<td>38.9 (33.7–43.4)</td>
<td>35.7 (33.2–45.2)</td>
<td>0.5</td>
<td>37.0 (32.8–43.5)</td>
<td>38.9 (34.7–43)</td>
<td>0.4</td>
</tr>
<tr>
<td>NOx, µmol/l</td>
<td>5.62 (4.53–7.25)</td>
<td>5.1 (4.48–6.2)</td>
<td>0.3</td>
<td>4.53 (4.09–4.88)</td>
<td>6.86 (6.20–8.26)</td>
<td>–</td>
</tr>
</tbody>
</table>

Data are presented as median (interquartile range).

Abbreviations: DPPH, 2,2-diphenyl-1-picrylhydrazyl; hs-CRP, high-sensitive C-reactive protein; IL-6, interleukin 6; PTX, pentraxin; sTNFR2, soluble tumor necrosis factor receptor 2; others, see Table 1.
NOx as a marker of vascular disease in CKD

Median (IQR) NOx concentrations 5.84 µmol/l (5.05–7.16) as compared with 4.88 µmol/l (4.35–5.67) (P = 0.021) (Figure 1B). Radial artery samples obtained during AVF formation were assessed in 36 patients, 14 samples (38%) did not reveal any apparent signs of calcification. Among the remaining samples, calcifications ranged from a few small dispersed concretions (grade 1) to heavy mineral deposits occupying large areas of the vascular wall (grade 4). Irrespective of their advancement, calcifications were observed primarily in the tunica media. However, no significant associations were observed between NOx concentrations and the presence or grade of radial artery calcifications (Table 4, Figure 2).

DISCUSSION Our main findings include a surprising positive relationship between NOx and surrogates of atherosclerosis, adjusted inflammation, and secondary hyperparathyroidism (Table 5). The prevalence of atherosclerotic CCA plaques was 2-fold higher in patients with NOx levels above the median (Table 4). This is further supported by the observation that patients with atherosclerotic plaques had significantly higher median (IQR) NOx concentrations 5.84 µmol/l (5.05–7.16) as compared with 4.88 µmol/l (4.35–5.67) (P = 0.021) (Figure 1B). Radial artery samples obtained during AVF formation were assessed in 36 patients, 14 samples (38%) did not reveal any apparent signs of calcification. Among the remaining samples, calcifications ranged from a few small dispersed concretions (grade 1) to heavy mineral deposits occupying large areas of the vascular wall (grade 4). Irrespective of their advancement, calcifications were observed primarily in the tunica media. However, no significant associations were observed between NOx concentrations and the presence or grade of radial artery calcifications (Table 4, Figure 2).

TABLE 4 Parameters of vascular remodeling/disease in predialysis and hemodialysis patients and their respective relationship to NOx

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HD (n = 42)</th>
<th>Uremia (n = 20)</th>
<th>P value NOx ≤ median (n = 31)</th>
<th>NOx > median (n = 31)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGF-β1, µg/ml, median (IQR)</td>
<td>5.01 (4.02–6.45)</td>
<td>6.19 (4.05–8.64)</td>
<td>0.3</td>
<td>5 (4.02–8)</td>
<td>0.9</td>
</tr>
<tr>
<td>Thrombomodulin, ng/ml, median (IQR)</td>
<td>18.9 (14.9–24.7)</td>
<td>14.6 (13.5–17.5)</td>
<td>0.007</td>
<td>15.0 (13.4–17.7)</td>
<td>0.02</td>
</tr>
<tr>
<td>CCA-IMT, mm, mean (SD)</td>
<td>0.97 (0.15)</td>
<td>0.96 (0.14)</td>
<td>0.9</td>
<td>0.93 (0.15)</td>
<td>0.99 (0.14)</td>
</tr>
<tr>
<td>Atherosclerotic plaque in CCA, n (%)</td>
<td>11 (48)</td>
<td>5 (31)</td>
<td>0.3</td>
<td>5 (25)</td>
<td>11 (55)</td>
</tr>
<tr>
<td>Radial artery calcifications, n (%)</td>
<td>14 (64)</td>
<td>8 (57)</td>
<td>0.7</td>
<td>10 (62)</td>
<td>12 (60)</td>
</tr>
</tbody>
</table>

a Data available for 39 patients (23 on hemodialysis and 16 predialysis; 20 with nitric oxide levels equal to or lower than the median and 19 with above the median)

b Data available for 36 patients (22 on hemodialysis and 14 predialysis; 16 with nitric oxide levels equal to or lower than the median and 20 with above the median)

Abbreviations: CCA-IMT, common carotid artery-intima media thickness; TGF-β1, transforming growth factor β1; others, see Table 1

FIGURE 1 Association between nitric oxide concentrations and ultrasound findings: common carotid artery-intima media thickness (A) and presence of atherosclerotic plaques (B)

Abbreviations: see Tables 1 and 4

TABLE 5 Multiple linear regression to predict values of the common carotid artery-intima media thickness

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>β (SE)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(NOx)</td>
<td>0.34 (0.16)</td>
<td>0.046</td>
</tr>
<tr>
<td>Log(Framingham risk score)</td>
<td>0.62 (0.17)</td>
<td>0.002</td>
</tr>
<tr>
<td>Log(hs-CRP)</td>
<td>−0.18 (0.16)</td>
<td>0.3</td>
</tr>
<tr>
<td>Log(creatinine)</td>
<td>−0.01 (0.19)</td>
<td>0.9</td>
</tr>
<tr>
<td>Log(iPTH)</td>
<td>−0.05 (0.17)</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Abbreviations: see Tables 1–4
for potential confounding parameters of renal function, inflammation, the Framingham cardiovascular risk score, and secondary hyperparathyroidism in chronic renal failure. Our data may enable an adequate assessment of NOx, as a candidate for longitudinal evaluation in advanced renal disease, where it may serve as an indicator of progressing atherosclerosis. Patients with higher NOx levels showed a greater degree of renal impairment and elevated markers of endothelial injury and phosphate imbalance. This could imply a relationship with medial arterial calcification, which, although prevalent and associated with hard outcomes in CKD, can occur without a traditional cardiovascular risk profile. However, NOx levels were not correlated with incidence nor grade of medial arterial calcification, indicating that these processes may be intercorrelated, rather than directly linked. Plasma antioxidant markers likewise did not differ in patients with uremia and on hemodialysis and were not affected by NOx levels.

Atherosclerosis is the underlying setting for future cardiovascular events, interplaying with inflammatory pathways and matrix alterations, both of which have become targets of interest. Molecular methods (e.g., miRNA profiling) hold future promise for diagnostics in cardiovascular conditions, though their clinical applications still remain to be fully elucidated. To date, CCA-IMT and plaque presence, surrogate markers of atherosclerosis, have been established as a useful diagnostic measure to evaluate cardiovascular risk. Meta-analyses have shown that although CCA-IMT assessments predict vascular events, considerable heterogeneity may be observed, partially owing to carotid segment definition and measurement protocols. As such, the mode of ultrasound assessment should be kept in mind when comparing across studies. Similarly to our findings, a previous cross-sectional study of patients on peritoneal dialysis reported that NOx correlated positively with plaques and CCA-IMT. However, results obtained in studies on peritoneal dialysis are not directly comparable with those concerning hemodialysis, with dialysis modality itself exerting an impact. The relationship between NOx and CCA-IMT in hemodialysis is not clear. Ocak et al recently assessed serum NOx levels in patients on hemodialysis and with uremia, reporting higher levels in both groups as compared with healthy controls. In the former, a significant positive relationship with hs-CRP levels was observed, which substantiated a hypothesis of an endothelial protective mechanism in response to inflammation. Diabetes and metabolic syndrome have also been associated with higher serum NOx levels, though, in the present study, we did not observe a direct relationship, possibly because of insufficient patient sample. In patients with diabetes, high NOx levels have been attributed to putative, induced nitric oxide synthase (NOS) isofrom production perpetuated by inflammation, oxidative stress and hypoxia. These processes are also integral to CKD, where uremic toxins, inflammation, and oxidative stress are the perpetrators of endothelial injury. Progressing CKD and hemodialysis are associated with an increase in the levels of inflammatory cytokines, including TNF, which might partly explain the association between NOx and thrombomodulin, a marker of endothelial injury and dysfunction, which is released in TNF-stimulated inflammatory settings, as well as between NOx and sTNFR2, which is an independent marker of mortality and cardiovascular risk in CKD. Our findings highlight the endothelium as the critical setting in CKD, and point to the complexity of processes involved in its impairment.

Previous studies in patients with coronary artery disease and healthy controls have shown that a lower NOx concentration and an increased level of asymmetric dimethyl arginine, an endogenous NOS inhibitor, occur in vascular disease. Passauer et al studied patients undergoing hemodialysis using an invasive technique, reporting impaired NOS and dilatory vascular response, while the baseline nitric oxide generation was increased. Some conflicting data reported so far may be due to heterogenous populations and different approaches to nitric oxide measurements. We hypothesize that the severe progression of atherosclerosis in the milieu of CKD corresponds with an endogenous failing response of an increase in NO, which does not alter the overall deficiency of NO characteristic of CKD, as suggested by the low (overall) NOx levels observed in our patients.
ARTICLE INFORMATION

ACKNOWLEDGMENTS This study was supported by a statutory grant from the Jagiellonian University Medical College (K/ZDS/0000597; to KK).

CONTRIBUTION STATEMENT KK and KB conceived the study, were the major participants in its design, coordination, interpretation of the results and statistical analysis, and prepared draft manuscript. MG carried out histological examination. PD performed statistical analysis. AP, MKu, OF, PG, KW, and PJ participated in the design of the study, interpretation of the results and statistical analysis. AP, MKu and WS participated in data analysis and in preparation of the final manuscript version. All authors were involved in data collection, draft manuscript modifications, and approved the final version of the manuscript.

CONFLICT OF INTEREST None declared.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for non-commercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.

REFERENCES

1 Kruger PC, Guzik TJ, Elleman TW. How can the results of the COMPASS trial benefit patients with coronary or peripheral artery disease in Poland. Kardiol Pol. 2019; 77: 651-669.

CONCLUSIONS We provide data on a large array of biomarkers implicated in renal and cardiovascular pathophysiology and report their relationship in uremia and hemodialysis. Our findings indicate that NOx remains a positive predictor of CCA-IMT, a surrogate atherosclerosis marker, even after adjustment for traditional and nontraditional confounders in a multiple linear regression analysis. No evident relationship with the presence or grade of medial artery calcification, assessed in a semiquantitative manner, was observed. However, the assessment of a highly reactive molecule through its biological metabolites holds several limitations. Considering NOx as a potential biomarker in CKD requires validation in homogenous populations to account for its relationship with comorbidity status.

LIMITATIONS Our study was designed in an exploratory manner, and the cross-sectional nature precludes any statements over causality, which could be inferred from statistical analyses. Secondly, it should be noted that a comparison of plasma and serum levels of markers may not reflect the relevant biological processes occurring in a local milieu, which also extends to associations with morphological and imaging findings. The array of biomarkers investigated has been well established in the literature; however, our data extend these findings to the spectrum of advanced CKD. While several of the molecules of pathogenic significance to CKD are well recognized, their interaction is not fully known. Associated pathophysiological pathways in which they are involved can be interconnected or occur in parallel throughout the course of progressive nephropathy. The assessment of a highly reactive molecule has also limitations, and each method holds some inherent drawbacks. NOx levels can be measured in plasma and serum by the Griess assay, a simple and rapid method reported to be reproducible. It is widely used as shown in the literature, though without certain methodological considerations it may be inaccurate; interference from components of bodily fluids (eg, amino acids, proteins, ascorbate), and rapid oxidation of nitrite to nitrate by, for example, oxyhemoglobin are factors to account for. Our adopted method involves deproteinization, and use of nitrate reductase to recover nitrite. This method is also in line with prior studies, which have attempted to circumvent the influence of diet on NOx levels through investigating fasting blood samples, as it has been demonstrated that an elevation in plasma NOx concentrations following dietary intake returns to baseline following 12 hours. Our approach holds a narrow scope in being limited to assessments of NOx and DPPH scavenging, as we did not assay other components involved in nitrosative stress and/or redox status.

ORIGINAL ARTICLE NOx as a marker of vascular disease in CKD 57

