Transcatheter closure of atrial septal defect with Chinese and Thai nitinol wire mesh occluders in adult patients

Filip Tyc¹, Alexander Suchodolski¹, Mateusz Knop², Dominika Rojczyk², Michał Gałęczka², Sebastian Smerdziński², Małgorzata Szkutnik², Jacek Białkowski², Roland Fiszer²

¹ Student Research Group, Department of Congenital Heart Diseases and Pediatric Cardiology, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, Silesian Centre for Heart Diseases, Zabrze, Poland
² Department of Congenital Heart Diseases and Pediatric Cardiology, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, Silesian Centre for Heart Diseases, Zabrze, Poland

Introduction Transcatheter closure of atrial septal defect (ASD) type II can be safely performed in children and adults. Since the implementation of the Amplatzer septal occluder (ASO) in 1997, many similar nitinol wire mesh Amplatzer-like occluders have been developed. Nitinol is an alloy of nickel and titanium. Studies revealed a rise in nickel serum concentration, especially in the first 3 months after the ASO implantation. To prevent this phenomenon associated with the use of several Amplatzer-like occluders (also the ASO from 2014), different methods to pretreat nitinol wires were applied.

The literature on the use of Chinese and Thai occluders for percutaneous ASD closure is scarce. All these Amplatzer-like occluders are very similar in shape, dimensions, structure of the delivery system, and the technique of implantation.

We described our experience with ASD closure in adults patients with the ASO devices elsewhere. However, to our best knowledge, this is the first study on ASD closure with the use of different nitinol wire devices (Chinese and Thai) with and without a protective nitinol layer.

Methods Between 1997 and 2018, over 1800 patients (children and adults) underwent transcatheter closure of interatrial septum in our center, performed with different nitinol wire mesh occluders with and without a protective layer. In this study, we included 74 subsequent adult patients with a history of percutaneous ASD closure performed between 2015 and 2017. The study population was divided into 2 groups: 37 patients below 50 years of age (median [range] age, 34 [18–45] years) were included in group 1 and 37 patients above 50 years of age (median [range] age, 58 [50–72] years), in group 2. We collected data on selected clinical characteristics, heart catheterization, and echocardiography results (Table 1). The balloon-stretched diameter of ASD was measured in 24 patients from group 1 and 24 from group 2. Applying a technique which was described elsewhere, the following atrial septal occluders were used: 40 Hyperion (Shanghai Shape Memory Alloy Co, Shanghai, China), 21 Heart R (Lifetech Scientific Corporation, Shenzen, China), 6 Cera (Lifetech Scientific Corporation, Shenzen, China), and 7 Cocoon (Vascular Innovations, Nonthaburi, Thailand) occluders. To minimize nickel release to serum, the following occluders have different protective layers: preoxidized nitinol in Hyperion, titanium nitride in Cera, and platinum in Cocoon. The Heart R occluder is produced without any protective layer on the nitinol wire. The application of the above mentioned devices depended on its availability (results of conducted tenders). Patients in whom the ASO (Abbott Medical, Plymouth, Minnesota, United States) and Figulla (Occlutech GmbH, Jena, Germany) occluders were used in this period were excluded from the study in order to ensure homogeneity of the sample.
Results and discussion

Transcatheter ASD closure was successfully performed in 73 out of the 74 patients (98.6%). In 1 patient from group 1 with relatively large ASD (treated with the 30-mm Hyperion occluder), the procedure was discontinued due to unfavorable morphology of the defect. The device was safely removed and the patient was referred for elective surgical closure of the defect.

While ASD (measured on transesophageal echocardiography) and applied devices' diameters were similar in both groups, mean pulmonary arterial pressure (measured directly in the catheterization laboratory) was higher in older patients (group 2). Left ventricular ejection fraction was lower in group 2 (the difference was not significant) as shown in Table 1.

All nitinol wire mesh occluders (with and without a protective layer) were similarly efficient with no difference in complication rate (no thrombosis, erosion, rupture, early or late embolization was observed). The fact that the delivery systems of Amplatzer-like occluders are

Patients were scheduled for a routine check-up in the outpatient clinic 1, 6, and 12 months after ASD closure and yearly thereafter; 9 patients were lost to follow-up. The median (range) follow-up was 27 (4–39) months. The researchers contacted patients by phone to assess their physical condition using the New York Heart Association (NYHA) class. Patients' subjective view on that aspect was also elicited by asking, among others, the question “How do you evaluate your physical well-being after ASD closure?” with 5 possible answers: much better, better, the same, worse, much worse. The study protocol was approved by the institutional review board.

Statistical analysis

Statistical analysis was performed with the use of the Statistica 12 software (TIBCO, Palo Alto, California, United States). P values less than 0.05 were considered significant. Distribution of all variables was assessed with the Shapiro–Wilk test. Based on its results, the t test or Mann–Whitney test was used to compare numerical variables. Categorical variables were compared using the χ² test.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All patients</th>
<th>Group 1 (n = 37)</th>
<th>Group 2 (n = 37)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, median (min–max)</td>
<td>47.5 (18.9–72)</td>
<td>34 (18.9–45)</td>
<td>58 (50–72)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>57 (77)</td>
<td>28 (75.7)</td>
<td>29 (78.4)</td>
<td>0.78</td>
</tr>
<tr>
<td>ASD diametera, mm, mean (SD)</td>
<td>17.6 (5.6)</td>
<td>17.42 (5.8)</td>
<td>17.67 (5.5)</td>
<td>0.86</td>
</tr>
<tr>
<td>Diameter after stretching, mm, mean (SD)</td>
<td>21.4 (5.49)</td>
<td>21.6 (5.7)</td>
<td>21.17 (5.36)</td>
<td>0.79</td>
</tr>
<tr>
<td>Device diameter, mm, mean (SD)</td>
<td>22.3 (6.3)</td>
<td>22.5 (7)</td>
<td>22.16 (5.73)</td>
<td>0.83</td>
</tr>
<tr>
<td>Fluoroscopy time, min, median (min–max)</td>
<td>3.9 (1.8–12)</td>
<td>4 (1.8–12)</td>
<td>3.8 (2–11)</td>
<td>0.7</td>
</tr>
<tr>
<td>mPAP, mm Hg, mean (SD)</td>
<td>18.1 (5.56)</td>
<td>16.32 (4.83)</td>
<td>20.28 (5.72)</td>
<td>0.007</td>
</tr>
<tr>
<td>RVD, cm, mean (SD)</td>
<td>3.6 (0.8)</td>
<td>3.4 (0.72)</td>
<td>3.75 (0.82)</td>
<td>0.08</td>
</tr>
<tr>
<td>LVEDD, cm, mean (SD)</td>
<td>4.4 (0.55)</td>
<td>4.32 (0.55)</td>
<td>4.47 (0.54)</td>
<td>0.25</td>
</tr>
<tr>
<td>RVD / LVEDD ratio, mean (SD)</td>
<td>0.83 (0.22)</td>
<td>0.80 (0.2)</td>
<td>0.85 (0.23)</td>
<td>0.43</td>
</tr>
<tr>
<td>LVEF, %, median (min–max)</td>
<td>68 (35–87)</td>
<td>71 (38–82)</td>
<td>65 (35–87)</td>
<td>0.18</td>
</tr>
<tr>
<td>Occluders without protectionb, n (%)</td>
<td>21 (28.4)</td>
<td>10 (27)</td>
<td>11 (29.7)</td>
<td>0.8</td>
</tr>
<tr>
<td>Occluders with protectionc, n (%)</td>
<td>53 (71.6)</td>
<td>27 (73)</td>
<td>26 (70.3)</td>
<td>0.8</td>
</tr>
<tr>
<td>Periprocedural complications, n (%)</td>
<td>3 (4.1)</td>
<td>1 (1.4)d</td>
<td>2 (2.7)e</td>
<td>0.56</td>
</tr>
</tbody>
</table>

a Measured on transesophageal echocardiography
b Occluders without a protective nitinol layer (Heart R)
c Occluders with a protective nitinol layer (Hyperion, Cera, Cocoon)
d A patient with an arteriovenous fistula
e One patient with an extensive hematoma at the puncture site and 1 patient with pericardial tamponade treated with pericardial drainage

Abbreviations: ASD, atrial septal defect; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; mPAP, mean pulmonary artery pressure; RVD, right ventricular diameter
We have not observed any symptoms of nickel allergy in our cohort, although we used occluders with bare nitinol wires (Heart R) as well as with a protective layer (Hyperion, Cera, Cocon). Skin allergy to nickel does not equate adverse effects after device implantation and the mechanism of intracardiac hypersensitivity to nickel differs from skin allergy. However, based on reports on acute reactions requiring explantation of the device, we believe that testing a skin reaction to nickel (in form of a nitinol occluder worn as a necklace) in patients with known allergy is helpful in clinical practice. It may exclude patients with severe allergy who might develop an acute reaction to the occluder. We did not report a case requiring the explantation of a nitinol occluder due to nickel allergy; however, patients with severe allergy might benefit from the implantation of different Amplatzer-like occluders with protective layers.

Limitations The retrospective nature and the small number of patients are the main limitations of our study.

Conclusions Transcatheter closure of ASD in adult patients below and above the age of 50 years is a safe and effective procedure. The application of different Chinese and Thai nitinol wire mesh occluders (with or without a protective layer) has similar effectiveness in this population.

ARTICLE INFORMATION

ACKNOWLEDGMENTS We would like to thank Weronika Duk and Katarzyna Poltyna from the Student Research Group for their help in collecting the follow-up data.

CONFLICT OF INTEREST None declared.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at kardiologiapol­sk@ptkardio.pl.

REFERENCES