IVUS-guided coronary intravascular lithotripsy to treat a severely under-expanded stent due to heavy underlying calcification. To re-stent or not?

Authors: George Kassimis, Matthaios Didagelos, Antonios Kourparanis, Antonios Ziakas

Article type: Clinical vignette

Received: December 31, 2019.

Accepted: January 27, 2020.

Published online: February 5, 2020.

ISSN: 0022-9032

e-ISSN: 1897-4279

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.
IVUS-guided coronary intravascular lithotripsy to treat a severely under-expanded stent due to heavy underlying calcification. To re-stent or not?

George Kassimis*1,2, Matthaios Didagelos2, Antonios Kouparanis2, Antonios Ziakas2

12nd Cardiology Department, Hippokration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

21st Cardiology Department, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece

Short title: In-stent shockwave

Correspondence*: George Kassimis

Assistant Professor of Cardiology

2nd Department of Cardiology, Hippokration Hospital

49 Konstantinoupoleos road, 54642, Thessaloniki, Greece

Phone: +302310994830 (office), Email: gkassimis@auth.gr

Conflict of interest: None declared
Coronary Intravascular Lithotripsy (IVL) offers a novel option for lesion preparation of severely calcified lesions in native coronary arteries pre-stenting [1]. Until now, undilatable lesions in previous stented segments have been courageously approached with debulking devices such as cutting or scoring balloons and atherectomy, with increased risk of procedural complications [1, 2]. The circumferential sonic waves of the IVL have the advantage to extend beyond strut layers and fracture deeper calcium deposits [1]. Some reports have supported the use of this technology for optimizing stent expansion without complications [3-5]. However, its efficacy in segments with multiple layers of stents has not been demonstrated and its impact on stent backbone/polymer integrity and drug-elution is still unknown. We present our initial experience with this technology in this demanding clinical scenario.

A 53-year-old male, with a history of type 2 diabetes mellitus, underwent a primary percutaneous coronary intervention (PCI) because of an inferior ST-elevation myocardial infarction (STEMI). Four zotarolimus eluting Resolute Integrity (Medtronic) stents, 2.75x30mm, 3.0x34mm, 4.0x15mm and 4.0x12mm were implanted in his dominant right coronary artery (RCA). Despite post-dilatation with a non-compliant Apollo NC (Brosmed) 4.0x10 mm balloon at high atm, full expansion of the distal stent could not be achieved because of 360° ring of calcification (Figure 1: panels 1, 2). Another significant lesion in the mid left anterior descending (LAD) artery was not treated in the index procedure. After a month, through transradial access and a 6 Fr AL 1 SH guiding catheter, the RCA intravascular ultrasound (IVUS) confirmed an underexpanded stent with heavy circumferential calcification and IVL treatment was decided (Figure 1: panel 3, Supplementary Figure S1: panels 3, a, b, c). A total of eight 10 sec-cycles were applied via a 4.0x12 mm shockwave-specific balloon (Shockwave Medical Inc) (Figure 1: panel 4). Repeated IVUS showed calcium disruption and a non-compliant Apollo NC (Brosmed) 4.0x10 mm balloon at 20 atm sufficiently expanded the stent (Figure 1: panels 5, 6, Supplementary Figure S1: panels 5, a’, b’, c’). No new stent-
in-stent implantation was deemed necessary. Finally, PCI of the LAD lesion with a 3.0x22 mm Resolute Integrity (Medtronic) stent completed the procedure. The patient was discharged the next day after an uneventful hospitalization.

IVL has appeared as a promising and effective technique for treating undilatable lesions in previous stented segments without complications. Only scarce reports exist about its use. Should a new stent-in-stent be implanted or not? Unanswered questions that accumulating experience will face up with time.
Figure 1

1. RCA angiogram during the inferior STEMI.

3. Residual in-stent stenosis of the RCA at the beginning of the second procedure.

4. In-stent S-IVL balloon during the second procedure.

5. In-stent post-dilatation after S-IVL with complete expansion of the non-compliant balloon.

6. Final result of the second procedure with no residual RCA in-stent stenosis.
References

