Mitral annulus disjunction as an incremental risk factor for ventricular arrhythmia in a young patient: a case study

Authors: Marcin Książczyk, Małgorzata Lelonek

Article type: Clinical vignette

Received: February 5, 2021.

Accepted: March 3, 2021.

Published online: March 16, 2021.

ISSN: 0022-9032

e-ISSN: 1897-4279

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.
Mitral annulus disjunction as an incremental risk factor for ventricular arrhythmia in a young patient: a case study

MAD as a risk factor for ventricular arrhythmia: a case study

Marcin Książczyk¹*, Małgorzata Lelonek¹

¹ Department of Noninvasive Cardiology, Medical University of Łódź, Łódź, Poland

*Correspondence author: Marcin Książczyk M.D., Department of Noninvasive Cardiology, 113 Żeromskiego Street, 90-549 Łódź, Poland, tel./fax: +48 42 639 35 71, e-mail: marcin_ksiazczyk@interia.pl

The authors declare that there is no conflict of interest regarding the publication of this paper.
Mitral annulus disjunction (MAD) is an abnormality defined as the distance of ≥2 mm between the mitral valve leaflet insertion point into the left atrial wall and the left atrium’s connection point to the ventricular myocardium measured in systole in transthoracic echocardiography (TTE) or any distance between the abovementioned points in cardiac magnetic resonance (CMR) or coronary computed tomography angiography [1,2]. MAD was found in 20-32.6% of patients with mitral valve prolapse (MVP) [1-4]. On the contrary, MVP was found in 78% of patients with MAD [5].

A 23-years-old female patient was referred to our department with palpitations and presyncope recurring for a few months. There were no coronary artery disease, cardiomyopathies, channelopathies, arrhythmias, or sudden cardiac death (SCD) in her family history. Resting electrocardiogram (ECG) showed normal sinus rhythm without any specific abnormalities observed in channelopathies, corrected QT (QTc) 440 ms (Figure 1, Panel A). TTE revealed MVP with moderate mitral regurgitation (Figure 1, Panel B). 24-hour Holter recorded non-sustained ventricular tachycardia (VT) of frequency 140 beats per minute (bpm), variating in cycle length, lasting 4.2 seconds, preceded by bradycardia 50 bpm with normal QTc 402 calculated with Bazett’s formula for the last sinus evolution before arrhythmia at night (Figure 1, Panel C), 27 premature ventricular contractions per hour, and median QTc interval 414 ms. Due to the strong suspicion of MAD, CMR was performed. CMR confirmed MAD and showed a longitudinal MAD distance of 5.2 mm (Figure 1, Panel D-F), posterior mitral valve leaflet billowing up to 7 mm, and moderate mitral regurgitation with regurgitant fraction of 21%; there was no late gadolinium enhancement (LGE) in the left ventricle wall as well as papillary muscles, and left ventricle ejection fraction (LVEF) was as much as 54%. Clinical presentation, resting ECG, and 24-hours Holter allowed to exclude common channelopathies as potential risk factors for VT. Besides, according to Schwartz et
al. diagnostic criteria for congenital LQTS, the patient was of low-probability of LQTS. In contrast, TTE and CMR allowed to exclude cardiomyopathies.

MAD arrhythmic syndrome is a clinically significant diagnosis evidenced by several clinical studies. In the study by Dejgaard et al., ventricular arrhythmias (VA) (non-sustained VT, sustained VT, or aborted cardiac arrest) are postulated to occur in 34% of patients with MAD [5]. In the same study, 71% of patients reported palpitations, 41% demonstrated presyncope, and 13% experienced syncope [5]. Young age, lower LVEF, papillary muscle fibrosis [5], and disjunction distance >8.5 mm [3] are markers for the prediction of VA. SCD might occur in up to 3.8% of patients with MAD [4]. MAD should be considered in younger patients with no other cause for VA or presyncope/syncope of uncertain etiology [5]. Our patient VA occurred despite preserved LVEF, absence of papillary muscles LGE, and MAD distance ≤8.5 mm. We administered metoprolol succinate 25 mg once a day in VT prevention and referred the patient for subcutaneous loop recorder implantation. In further studies, in patients with the MAD arrhythmic syndrome, pharmacological or device therapies should be evaluated [5].
References:


Figure 1. A. Resting electrocardiogram presenting normal sinus rhythm of frequency 60 beats per minute, normogram, PQ interval – 140 ms, QRS complex – 80 ms, corrected QT calculated with Bazett’s formula – 440 ms, normal ST segments and T waves. B.
Transthoracic echocardiography presenting moderate mitral regurgitation and mitral valve posterior leaflet prolapse in apical four chamber view. C. Non-sustained ventricular tachycardia, varying in cycle length, preceded by bradycardia with normal corrected QT recorded at night in 24-hour Holter. D-F. Cinematographic sequences of cardiac magnetic resonance in (D) vertical long axis (two chambers) view, (E) horizontal long axis (four chambers) view and (F) sagittal left ventricle outflow tract (three chambers) view showing mitral annulus disjunction distance of 5.2 mm measured between mitral valve posterior leaflet insertion point into the left atrial wall (orange arrowhead) and the left atrium's connection point to the ventricular myocardium (orange arrow), mitral valve posterior leaflet billowing of 7 mm (red two-headed arrow in Panel E) and moderate mitral regurgitation jet (white asterisk in Panel F); a – mitral valve anterior leaflet, Ao – ascending aorta, LA – left atrium, LV – left ventricle, p – mitral valve posterior leaflet, RA – right atrium, RV – right ventricle.