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Introduction  Serotonin is formed in the body 
from exogenous L‑tryptophan. The process of se‑
rotonin synthesis occurs in the gastrointestinal 
(GI) tract, central and peripheral nervous sys‑
tem, and immune system cells.1,2 The GI tract is 
the largest source of serotonin. Approximately 
90% of total serotonin is found there and is syn‑
thesized mainly in the enterochromaffin cells.3

Serotonin, after finding its way to the extracel‑
lular space, is captured by reuptake transporters, 
mainly by serotonin reuptake transporter (SERT). 
SERT is widely expressed in enterocytes, neurons 

of the central and peripheral nervous system, 
and in blood platelets,4,5 where serotonin is me‑
tabolized and its main metabolites, 5‑hydroxy‑
indoleacetic acid (5‑HIAA) is excreted in urine.6 
Basic secretion of serotonin by the enterochro‑
maffin cells in the GI tract is high and increases 
as a result of pH changes, osmolarity of the in‑
testinal contents, intraintestinal pressure, tox‑
ins, some drugs, and β‑adrenergic and muscar‑
inic stimulation.

Pinealocytes and GI enterochromaffin cells 
are a rich source of melatonin. The pineal gland 
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Abstract

Introduction  Hepatic encephalopathy is one of the symptoms of liver failure. The exact causes of 
encephalopathy are complex and still unclear. Apart from elevated blood ammonia levels, the  role of 
numerous other factors is being considered.
Objectives  The aim of the study was to determine the serum level of serotonin and melatonin and 
the urinary excretion of their metabolites (5‑hydroxyindoleacetic acid [5‑HIAA] and 6‑sulfatoxymelatonin 
[6‑HMS]) in patients with various stages of liver cirrhosis.
Patients and methods  The study comprised 75 patients with alcohol‑induced liver cirrhosis and 25 
healthy subjects (control group). Based on the Child‑Pugh classification, 3 groups of 25 patients each 
were distinguished – group A, B, and C with grade A, B, and C of liver failure, respectively. Blood sam‑
ples were drawn at fasting at 9 a.m., and 24‑hour urine collection was performed. Immunoenzymatic 
assays were used to determine serum melatonin and serotonin levels as well as urine 5‑HIAA and 6‑HMS 
concentrations.
Results  Serum serotonin levels were 159.8 ±23.1 ng/ml in controls, 179.3 ±21.1 ng/ml in group 
A (P >0.05), 143.2 ±22.8 ng/ml in group B (P >0.05), and 114.5 ±37.6 ng/ml in group C (P <0.01). 
Serum melatonin levels were 10.6 ±1.7 in controls, 31.2 ±9.8 pg/ml in group A (P <0.01), 49.8 ±12.2 
pg/ml in group B (P <0.001), and 94.8 ±22.6 pg/ml in group C (P <0.001). Urinary 5‑HIAA excretion 
was 5.9 ±2.1 mg/24 h in controls, 5.9 ±1.9 mg/24 h in group A (P >0.05), 4.8 ±1.2 mg/24 h in group 
B (P >0.05), and 4.6 ±1.4 mg/24 h in group C (P <0.05). Urinary 6‑HMS excretion was 26.6 ±15.1 
μg/24 h in controls, 23.2 ±7.9 μg/24 h in group A (P >0.05), 18.3 ±10.6 μg/24 h in group B (P >0.05), 
and 6.5 ±3.6 μg/24 h in group C (P <0.001).
Conclusion  Disturbances in serotonin and melatonin homeostasis observed in patients with liver 
cirrhosis may be associated with advanced encopaholopathy.
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failure might account for those morning peaks 
of melatonin.26 Zee et al.27 and Coy et al.28 ob‑
served such changes in the rhythm of melatonin 
secretion in rats after creation of portal‑system‑
ic anastomosis. In turn, Finn et al.29 observed, 
under similar experimental conditions, that af‑
ter oral administration of neomycin, the normal 
rhythm of melatonin secretion was restored. 
A conclusion was drawn from these studies that 
higher blood ammonia concentrations has a tox‑
ic effect on brain structures, including the pine‑
al gland, and that it changes the rhythm of me‑
latonin secretion.30,31

All the above changes could have a significant 
impact on the clinical course of liver cirrhosis.

The aim of our study was to determine serum 
serotonin and melatonin levels and the urinary 
excretion of their metabolites (5‑HIAA, 6‑HMS) 
in patients in various stages of liver cirrhosis.

Patients and methods  Patients  The study 
comprised 75 patients (aged from 29 to 63 
years) with alcohol‑induced liver cirrhosis grade 
A (group A; n = 25), grade B (group B; n = 25), 
and grade C (group C; n = 25) of the Child‑Pugh 
classification.32 The control group comprised 25 
healthy subjects aged from 26 to 54 years. A writ‑
ten consent was obtained from all the examined 
patients and the Ethical Committee of the Med‑
ical University of Lodz, Łódź, Poland, approved 
the study protocol (RNN/272/05/KB). All pa‑
tients had abused alcohol for the period of 6 to 21 
years. The diagnosis was based on environmental 
factors, clinical examination, diagnostic imaging 
(ultrasonography, panendoscopy, computed to‑
mography), and laboratory investigations. At the 
same time, all patients were subjected to psycho‑
logical and psychometric testing, e.g., the number 
connection test (NCT‑A, NCT‑B) and line tracing 
test to determine the severity of encephalopathy 
according to the West Haven criteria.33,34

Methods  The following routine biochemical 
tests were performed several times: blood cell 
count, bilirubin, alanine transaminase, aspartate 
transaminase, γ‑glutamyltranspeptidase, alkaline 
phosphatase, glucose, cholesterol, urea, ammonia, 
creatinine, glomerular filtration rate, prothrom‑
bin, albumins, globulins as well as the surface 
antigen of the hepatitis B virus and antihepati‑
tis C virus. Blood samples were drawn at 9 a.m., 
and 24‑hour urine collection was performed. 
At night, patients remained in rooms with no 
access to white light. Three days prior to the ex‑
amination and on the day of the examination, 
patients remained on the same standard diet, 
i.e., Nutridrink (Nitrison) 3 × 400 ml (1800 kcal) 
and 1500 ml of mineral water. Blood was centri‑
fuged and then the serum was stored at –70ºC. 
Serum melatonin and serotonin levels and urine 
5‑HIAA and 6‑HMS concentrations were deter‑
mined by an immunoenzymatic method (IBL, RE 
59 021, RE 59 121, RE 59 131, and RE 59 031 kits; 
IBL, Germany).

secretes this hormone in the circadian rhythm, 
mainly regulated by light stimuli.7,8 It is released 
from the GI tract, under the effect of various stim‑
uli and plays a significant enteroprotective role 
in the paracrine mechanism.9,10 Then, it is metab‑
olized (in insignificant quantity) in enterocytes 
via enzymatic fraction CYP1B1.11 Its main part 
enters the liver through a portal system where 
about 90% of circulating melatonin is deactivat‑
ed after the first pass.12 Melatonin is metabolized 
by cytochrome P‑450 enzymes (CYP1A1, CYP1A2) 
in hepatocytes to its main metabolites: 6‑sulfa‑
toxymelatonin (6‑HMS) and 6‑hydroxymelatonin 
glucuronide, which are excreted in urine.13,14 Possi‑
bly, part of melatonin is excreted in its unchanged 
form also to the bile because melatonin concen‑
tration in this systemic fluid is also high.15,16

Before biodegradation, melatonin fulfils an ex‑
tremely important biological role. Intensive meta‑
bolic processes occur constantly in hepatocyte mi‑
tochondria, resulting in detoxification of the body. 
Simultaneously, increased release of reactive ox‑
ygen species that can damage liver cells is ob‑
served in these processes. Melatonin, demon‑
strating mainly antioxidant properties, protects 
them against such negative effects.17‑19

Serotonin and melatonin homeostasis can 
change in various pathological conditions. Liver 
cirrhosis can be one of them, particularly during 
hepatic failure and portal hypertension. In these 
patients, secondary changes in the GI tract oc‑
cur, known as secondary enteropathy. In the al‑
tered intestinal wall, disturbances both in sero‑
tonin synthesis and metabolism are observed. 
Serotonin leakage to systemic circulation cannot 
be excluded. It could be manifested by anxiety, 
sleep disorders, and other emotional disturbanc‑
es.20 Then, the liver should play the role of a filter, 
where serotonin is catabolized. This mechanism 
fails in the case of liver diseases. In experimental 
studies on rats with toxic hepatocellular damage, 
a marked increase of serotonin and 5‑HIAA con‑
centrations was observed in brain structures.21 
However, it is not clear whether these products 
originated in the brain or in the GI tract, be‑
cause the applied toxic agent (thioacetamide), 
such as cytostatics, can induce serotonin syn‑
thesis in the enterochromaffin cells. Regardless 
of the source of serotonin, the increase of its lev‑
el can cause symptoms from the central nervous 
system (CNS) similar to those occurring in pa‑
tients with hepatic encephalopathy.

Such changes could be related to melatonin be‑
cause impaired liver is not able to metabolize its 
whole pool originating from the GI tract. This was 
confirmed by numerous studies showing changes 
in blood melatonin levels in patients with chron‑
ic liver diseases.22,23

Moreover, in liver cirrhosis, the circadian 
rhythm of pineal melatonin secretion is disturbed 
and its concentration in blood peaks in the morn‑
ing hours.24,25 There have been numerous attempts 
to explain this phenomenon. It has been suggest‑
ed that metabolic disorders associated with liver 
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tistica and the Excel (Microsoft Co.) software 
were used for statistical analysis.

Results  In healthy subjects, the mean serum 
serotonin level was 159.8 ±23.1 ng/ml (FIGURE 1). 
In the group of patients with liver cirrhosis, se‑
rotonin levels differed depending on the severity 
of liver failure. The levels were 179.3 ±21.1 ng/ml 
in group A (P >0.05), 143.2 ±22.8 ng/ml in group 
B (P >0.05), and 114.5 ±37.6 ng/ml in group C 
(P <0.01).

The urinary 5‑HIAA excretion was 5.9 ±2.1 
mg/24 h in the control group, 5.9 ±1.9 mg/24 h 
in group A (P >0.05), 4.8 ±1.2 mg/24 h in group 
B (P >0.05), and 4.6 ±1.4 mg/24 h in group C 
(P <0.05) (FIGURE 2).

In the morning hours, the mean serum me‑
latonin level was 10.6 ±1.7 pg/ml in the control 
group, 31.2 ±9.8 pg/ml in group A (P <0.01), 49.8 
±12.2 pg/ml in group B (P <0.001), and 94.8 ±22.6 
pg/ml in group C (P <0.001) (FIGURE 3).

The urinary 6‑HMS excretion was 26.6 ± 15.1 
μg/24 h in the control group, 23.2 ±7.9 μg/24 h 
in group A (P >0.05), 18.3 ±10.6 μg/24  h in 
group B (P >0.05), and 6.5 ±3.6 μg/24 h in group 
C (P <0.001) (FIGURE 4).

Discussion  The results confirm the findings 
of other investigators that homeostasis of both 
serotonin and melatonin is disturbed in patients 
with liver cirrhosis, but these changes depend on 
the grade of liver failure. Particularly significant 
changes occur in patients with advanced liver fail‑
ure and severe hepatic encephalopathy.

Hepatic encephalopathy is a complex neurop‑
sychiatric syndrome characterized by disturbanc‑
es in behavior and cognition and by neurological 
signs.35 The exact causes of encephalopathy are 
unknown. Impairment of the liver cells, which 
cannot detoxify the toxic compounds formed in 
the body during various biochemical processes, 
and shunting of blood from the portal to systemic 
circulation are the main factors in the pathogen‑
esis of this type of encephalopathy. Under these 
conditions, toxic substances are transported with 
portal blood to various organs including the brain, 
where they cause metabolic disorders. Ammonia 
is most frequently listed among the substances 
contributing to encephalopathy. It disturbs enzy‑
matic processes of the brain tissue, inhibits acety‑
locholine and dopamine activity, and intensifies 
the storage of false neurotransmitters. Howev‑
er, high levels of ammonia in blood are not de‑
tected in all patients with encephalopathy, and 
in these cases other compounds and metabolites 
may be involved in its pathogenesis. The synthe‑
sis of physiological neurotransmitters decreas‑
es in the brain tissue in response to those com‑
pounds and false neurotransmitters accumulate. 
This, in turn, leads to such symptoms as trem‑
or or psychoemotional disorders.36,37 Conscious‑
ness impairment is also explained by elevated 
concentration of many neurotransmitters and 

Statistical analysis  The nonparametric Kruskal‑ 
-Wallis test was used to compare melatonin con‑
centration in a given grade of liver failure and 
the Mann‑Whitney U test was applied for paired 
comparison. The verification of significance of 
the differences in the results was performed at the 
level of P = 0.05, P = 0.01, and P = 0.001. The Sta‑
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Figure 2  Urinary 5‑hydroxyindoleacetic acid (5‑HIAA) excretion in healthy subjects 
(K) and patients with different grades of hepatic insufficiency (A, B, C – according to 
the Child‑Pugh score); a  P <0.05

Figure 1  Serum serotonin levels in healthy subjects (K) and patients with different 
grades of hepatic insufficiency (A, B, C – according to the Child‑Pugh score); a  P <0.01
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Figure 3  Diurnal serum melatonin levels in healthy subjects (K) and patients with 
different grades of hepatic insufficiency (A, B, C – according to the Child‑Pugh score); 
a  P <0.01, b  P <0.001
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deficit in the CNS is the cause of mood deteriora‑
tion and depression. This deficit can occur in dif‑
ferent states. The hypothesis put forward by Cur‑
zon has suggested that elevated levels of gluco‑
corticosteroids, caused by chronic mental or bio‑
logical stress, activates hepatic pyrolase, which in‑
stead of metabolizing tryptophan into serotonin 
enhances the conversion of tryptophan to kynure‑
nine and leads to serotonin deficiency.40,41 Such 
process occurs in many tissues, including those 
in the CNS.42,43 As a result, kynurenine pathway 
metabolites are formed: kynurenic acid has neu‑
roprotective properties, while quinolinic acid ex‑
erts neurotoxic effects. Another metabolite, 3‑hy‑
droxikynurenine, shows a similar neurotoxic activ‑
ity by inducing oxygen free radical generation.44

It is interesting that low blood serotonin lev‑
els were accompanied by elevated levels of mela‑
tonin, especially in patients with advanced liver 
failure. A simultaneous decrease of urinary ex‑
cretion of 5‑HMS indicates its insufficient me‑
tabolism in the liver. From a physiological point 
of view, hypermelatonemia is beneficial because 
of its hepatoprotective activity.

The results of the above experimental stud‑
ies had significant practical implications and 
encouraged to use melatonin for therapeutic 
purposes.45,46 Melatonin has a protective effect 
on the structure and function of the CNS, and its 
analogues are used in the therapy of depression. 
However, the level of all hormones in the body 
should be appropriate. Both, deficiency and ex‑
cess of hormones could have unfavorable effect on 
general well‑being. The suspicion arises that high 
melatonin levels that persist for a long time might 
result in the occurrence of some clinical manifes‑
tations such as fatigue or sleep disorders.

The pathogenesis of hepatic encephalopathy is 
complex but disturbances in serotonin and me‑
latonin homeostasis may alter clinical presenta‑
tion of liver cirrhosis. Disturbances in serotonin 
and melatonin homeostasis observed in patients 
with liver cirrhosis may be associated with ad‑
vanced encopaholopathy.
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Streszczenie

Wprowadzenie  Jednym z objawów niewydolności wątroby jest encefalopatia wątrobowa. Dokładne 
przyczyny encefalopatii są złożone i nadal niejasne. Oprócz zwiększenia stężenia amoniaku we krwi bierze 
się pod uwagę rolę wielu innych czynników.
Cele  Celem pracy była ocena stężenia serotoniny i melatoniny we krwi oraz wydalania ich metabolitów 
(kwasu 5‑hydroksyindolooctowego [5‑HIAA] i siarczanu 6‑hydroksymelatoniny [6‑HMS]) z moczem u osób 
z różnym stopniem niewydolności wątroby.
Pacjenci i metody  Badania wykonano u 75 chorych z alkoholową marskością wątroby oraz u 25 osób 
zdrowych (grupa kontrolna). Na podstawie klasyfikacji Childa i Pugha wyodrębniono 3 grupy po 25 
chorych – odpowiednio grupy A, B i C ze stopniem A, B i C niewydolności wątroby. Krew do badania 
pobierano na czczo o godz. 9:00, a mocz zbierano przez 24 h. Serotoninę i melatoninę w surowicy oraz 
5‑HIAA i 6‑HMS w moczu oznaczano metodą immunoenzymatyczną.
Wyniki  Stężenie serotoniny w surowicy wynosiło 159,8 ±23,1 ng/ml w grupie kontrolnej, 179,3 
±21,1 ng/ml w grupie A (p >0,05), 143,2 ±22,8 ng/ml w grupie B (p >0,05) i 114,5 ±37,6 ng/ml w grupie C 
(p <0,01). Poziom melatoniny wynosił 10,6 ±1,7 pg/ml w grupie kontrolnej, 31,2 ±9,8 pg/ml w grupie 
A (p <0,01), 49,8 ±12,2 pg/ml w grupie B (p <0,001) i 94,8 ±22,6 pg/ml w grupie C (p  <0,001). Wy‑
dalanie 5‑HIAA z moczem wynosiło 5,9 ±2,1 mg/24 h w grupie kontrolnej, 5,9 ±1,9 mg/24 h w grupie A 
(p >0,05), 4,8 ±1,2 mg/24 h w grupie B (p >0,05) i 4,6 ±1,4 mg/24 h w grupie C (p <0,05). Wydalanie 
6‑HMS z moczem wynosiło 26,6 ±15,1 μg/24 h w grupie kontrolnej, 23,2 ±7,9 μg/24 h w grupie A 
(p >0,05), 18,3 ±10,6 μg/24 h w grupie B (p >0,05) i 6,5 ±3,6 μg/24 h w grupie C (p <0,01).
Wnioski  Zaburzenia homeostazy serotoniny i melatoniny u osób z marskością wątroby mogą się wiązać 
z zaawansowaną encefalopatią.
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