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the Bethesda reporting system,5 cytologic re‑
sults of FNAB are inconclusive in 10% to 25% 
of patients with thyroid nodules.6 These results 
include atypia or follicular lesion of undeter‑
mined significance (AUS / FLUS; Bethesda cate‑
gory III) and follicular neoplasm or suspicious for 
follicular neoplasm (FN / SFN; Bethesda catego‑
ry IV). In those cases, a differentiation between 

INTRODUCTION Thyroid nodules may be detect‑
ed in up to 67% of the adult population.1 Ultra‑
sound examination remains the gold standard 
for a rapid diagnosis of potential malignancy.2,3 
It may be complemented by fine ‑needle aspira‑
tion biopsy (FNAB). Both methods enable a di‑
agnosis and choice of appropriate treatment in 
75% to 90% of patients.4 However, according to 
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ABSTRACT

INTRODUCTION Inconclusive cytologic results of thyroid fine needle aspiration biopsy (FNAB) include 
atypia or follicular lesion of undetermined significance (FLUS) and follicular neoplasm or suspicious for 
follicular neoplasm (SFN).
OBJECTIVES We aimed to assess the genetic background of indeterminate thyroid nodules and to identify 
new genetic pathways potentially involved in the development of follicular thyroid cancer.
PATIENTS AND METHODS Genomic DNA was isolated from FNAB samples from 25 white patients (2 men; 
23 women) diagnosed preoperatively with FLUS (n = 16) and SFN (n = 9). Next generation sequencing 
(NGS) was performed. The results were compared with clinical data, including final postsurgical diagnoses.
RESULTS The malignancy rate was 28%. KDR, RET, and TP53 gene mutations were most frequent in 
FLUS and SFN samples finally diagnosed as cancers, whereas alterations in RET, TP53, FLT3, APC, and 
PDGFRA predominated in benign tumors. KDR tended to be more common in malignant samples (75% 
vs 20%, P = 0.1). A total number of mutated genes was higher in patients with benign tumors (17 vs 
11, P = 0.02), but there was no difference between groups in the mean number of mutations per patient 
(4.9 [range, 1–9]).
CONCLUSIONS We showed that the heterogeneity in the genetic background of indeterminate thyroid 
nodules corresponds to their histopathologic diversity. The role of KDR as a possible malignancy marker 
needs to be confirmed. Glass slides with FNAB samples may constitute a reliable source of genetic 
material for NGS studies, providing a better insight into the molecular profile of thyroid nodules.
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The results of the cytologic analysis of FNAB 
specimens from the glass slides were paired with 
the results of the histopathologic assessment of 
samples obtained during total or subtotal thy‑
roidectomy, and were subjected to further mo‑
lecular analyses. The major exclusion criterion 
was incomplete medical records of a patient. Only 
patients who were not receiving any treatment 
at the time of diagnosis and who had no oth‑
er endocrine disorders or cancer were included. 
The characteristics of patients are presented in 
TABLE 1.

The diagnosis of FLUS and SFN was established 
on the basis of assessment by qualified patholo‑
gists and cytologic reevaluation of the FNAB spec‑
imens. For each patient, we recorded the age at di‑
agnosis, sex, tumor size, multifocality, extrathy‑
roidal extension, the presence of histopatholog‑
ic signs of chronic lymphocytic thyroiditis (CLT), 
and histopathologic staging (pathological TNM) 
according to the 8th TNM classification.12 All data 
were analyzed according to final postoperative 
histopathologic diagnoses (TABLE 2).

Tumors were regarded as multifocal when 2 or 
more foci were found. In the case of multifocality, 
the size of the tumor was recorded as the size of 
the largest focus. All samples were anonymized 
prior to analysis.

Genomic DNA extraction The areas of interest 
were indicated by a qualified pathologist from 
the 25 FNAB specimens; waste material after es‑
tablishing a cytologic diagnosis, fixed with Cyto‑
fixTM (BD Biosciences, San Jose, California, Unit‑
ed States), and the unstained slides were manu‑
ally microdissected. Genomic DNA was extracted 
using a QIAamp DNA FFPE Tissue Kit (Qiagen, 
Valencia, California, United States), according to 
the manufacturer’s instructions. Genomic DNA 
was quantified using a Qubit fluorometer (Invi‑
trogen, Carlsbad, California, United States), and 
Nano Drop spectrometer (Thermo Fisher Scientif‑
ic, Carlsbad, California, United States). The DNA 
quality, purity, and integrity were tested.

Next ‑generation sequencing The 50 ‑gene Ion Am‑
pliSeq Cancer Hotspot Panel v2 (CHPv2; Thermo 
Fisher Scientific) with the Ion TorrentTM Personal 
Genome Machine platform (Thermo Fisher Scien‑
tific) was used for all experiments. The analytical‑
ly and clinically validated panel enables to ampli‑
fy 207 amplicons, covering approximately 2800 
mutations deposited in the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database from 50 
oncogenes and tumor ‑suppressor genes common‑
ly mutated in human cancers listed in Supplemen‑
tary material, Table S1. The Ion AmpliSeq Library 
Kit, v. 2.0 (Thermo Fisher Scientific), was used to 
amplify 10 ng of DNA according to the manufac‑
turer’s instructions. Sequencing beads were tem‑
plated and enriched using the Hi ‑Q Template OT2 
200 Kit (Thermo Fisher Scientific). The librar‑
ies were barcoded with the Ion Xpress Barcode 
Adaptors Kit (Thermo Fisher Scientific), clonally 

follicular thyroid adenoma and follicular thy‑
roid cancer (FTC) is possible only on the basis 
of a histopathologic assessment of vascular or 
capsular invasion (or both),7 thus making sur‑
gery unavoidable.8

To avoid the need for a diagnostic surgery, new 
markers of presurgical differentiation between 
follicular thyroid adenoma and FTC are being ex‑
tensively studied. Currently, one of the main areas 
for research is the identification of genetic alter‑
ations that may become markers of malignancy.9 
The BRAF, 167 Gene Expression Classifier (GEC), 
and ThyroSeq tests are dedicated to the assess‑
ment of indeterminate thyroid nodules.10 How‑
ever, they have not yet provided the results that 
would be sufficiently accurate for routine clini‑
cal use,10 while the comprehensive assessment of 
the genetic background of AUS/FLUS, FN/SFN, as 
well as FTC (not covered in the Cancer Genome 
Atlas Program) is still lacking.

The aim of the present study was to assess 
the genetic background of indeterminate thy‑
roid nodules based on the material from FNAB 
samples in order to identify a mutational status 
that might facilitate the understanding of these 
nodules. We also aimed to discover novel genetic 
pathways potentially involved in FTC.

PATIENTS AND METHODS Patient characteristics 
and clinicopathologic analysis We retrospective‑
ly assessed 25 randomly selected white patients 
(2 men and 23 women; median age at diagnosis, 
46 years [range, 28–68 years]) from the depart‑
ment of endocrinology at a single reference ter‑
tiary care hospital, who subsequently underwent 
thyroidectomy. The analysis covered the data col‑
lected between 2014 and 2018. We included pa‑
tients who were preoperatively diagnosed with 
a thyroid nodule and who underwent FNAB, with 
a resulting cytologic diagnosis of an indetermi‑
nate thyroid nodule. Among the study group, 
16 patients were diagnosed with FLUS, and 9 pa‑
tients, with SFN, according to the most recent 
2017 World Health Organization criteria.11

The study was approved by the Bioethical Com‑
mittee of the Poznan University of Medical Sci‑
ences (decision no. 1016/15) and was conduct‑
ed in accordance with the Declaration of Helsin‑
ki. Written informed consent was obtained from 
all patients.

WHAT’S NEW?

Despite developed diagnostic methods for thyroid nodules, fine needle aspira
tion biopsy (FNAB) may still provide inconclusive results. This is the first study 
evaluating a wide panel of potential malignancy markers in material obtained 
from glass slides with FNAB specimens. We showed that the heterogeneity in 
the genetic background of indeterminate thyroid nodules corresponds to their 
histopathologic diversity. Of the gene mutations studied, the KDR gene tended 
to be more common in malignant samples and may be a possible malignancy 
marker. Glass slides with FNAB samples were shown to be a reliable source 
of genetic material for NGS studies.
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the Ion Reporter with the AmpliSeq CHPv2 
single ‑sample workflow and default settings. 
The Variant Caller plugin included in Torrent 
Suite Software v.3.6 (Thermo Fisher Scientif‑
ic), as well as the MutationTaster2 algorithm, 
were used to identify variations in target re‑
gions (http://www.mutationtaster.org). We 
categorized variants according to whether they 
comprised a stop codon, nonsynonymous, or 
frameshift mutation in the exonic region. Each 
of the identified genetic variations was coded 
according to the plus strand of the human ge‑
nome assembly hg19 (Ensembl, www.ensembl.
org). The limit of detection was a 5% mutation‑
al allelic frequency at 250 × coverage depth for 
each tested region.

amplified by emulsion polymerase chain reaction 
in vitro on the Ion PGM Template OneTouch 2 
system (Thermo Fisher Scientific). Ion Sphere Par‑
ticles with DNA were isolated and sequenced on 
Ion 318v2 Chip using the Hi ‑Q Sequencing Kit ac‑
cording to the manufacturer’s protocols (Thermo 
Fisher Scientific).

Mutation analysis Data obtained from genom‑
ic experiments were subjected to analysis using 
dedicated software (Ion Torrent, Thermo Fish‑
er Scientific).

Torrent Suite Software v.5.2 (Thermo Fisher 
Scientific) was used for signal processing, map‑
ping, and quality control. The sequence vari‑
ants were called and data were analyzed using 

TABLE 1 Characteristics of patients according to preoperative fine needle aspiration biopsy results classified using 
the Bethesda System for Reporting Thyroid Cytopathology

Parameter FLUS, Bethesda III 

(n = 16 [64%])
SFN, Bethesda IV 

(n = 9 [36%])

Sex, male / female, n (%) 2/14 (12/88) 0/9 (0/100)

Age at diagnosis, y, median (range) 45 (35–68) 51 (28–65)

Final histopathologic diagnosis, n (%) Benign 13 (81) 5 (56)

Nodular hyperplasia 10 (62) 5 (56)

Follicular adenoma 3 (19) 0

Malignant 3 (19) 4 (44)

Follicular thyroid cancer 0 1 (11)

Papillary thyroid cancer 3 (19) 3 (33)

Malignancy rate, % 18.8 44.4

Length of follow up, mo, median (range) 34 (13–57) 30 (17–57)

Tumor size, mm, mean (SD) 15.6 (9.3) 19.8 (4.4)

Localization in the right / left lobe, n (%) 8/8 (50/50) 4/5 (44/66)

The differences between FLUS and SFN groups were nonsignificant.

Abbreviations: FLUS, follicular lesion of undetermined significance; SFN, suspicious for a follicular neoplasm

TABLE 2 Characteristics of patients according to final postoperative histopathologic diagnosis

Parameter Benign outcome 
(n = 18 [72%])

Malignant outcome 
(n = 7 [28%])

P value

Sex, male / female, n (%) 2/16 (11/89) 0/7 (0/100) 0.48

Age at diagnosis, y, median (range) 46 (35–68) 42 (28–65) 0.64

Age group, n (%) <55 y 13 (72) 6 (86) 0.64

≥55 y 5 (28) 1 (14)

Follow up duration, mo, median (range) 34 (14–57) 23 (13–54) 0.12

Tumor size, mm, mean (SD) 19.2 (8.8) 12.6 (4.8) 0.11

Localization in the right lobe / left lobe, n (%) 6/12 (33/67) 6/1 (86/14) 0.03

Multifocality, n (%) 4 (22) 2 (29) 1.00

pT1aN0M0a, n (%) – 4 (57) NA

pT2N0M0a, n (%) – 3 (43) NA

Vascular invasion, n (%) – 5 (71) NA

Chronic lymphocytic thyroiditis, n (%) 6 (33) 6 (86) 0.03

Mutations per patient, n, mean (SD) 5.3 (2.0) 4 (3.1) 0.74

Total number of genes with found mutations, n 17 11 0.02

a Tumor stage according to the TNM classification

Abbreviations: NA, not applicable
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outcome). The results showed that 10 samples 
(56% of all samples with benign diagnosis) har‑
bored mutated genes. The most common was 
RET (n = 8; 80%), followed by TP53 (n = 7; 70%), 
FLT3 (n = 6; 60%), APC (n = 6; 60%), and PDGFRA 
(n = 5; 50%). In contrast, among the samples with 
malignant diagnosis, mutations were detected in 
4 (24%). The most frequent were KDR and RET 
(both n = 3; 75%), followed by TP53 (n = 2; 50%). 
The KDR mutation tended to be more common 
in cancer samples than in benign ones (n = 3; 
75% vs n = 2; 20%; P = 0.1). The ERBB4, IDH1, 
JAK3, PTEN, RB1, and SMAD4 mutations were 
only found in benign samples. There were no 
mutations found exclusively in cancer samples. 
The genetic landscape of both groups is present‑
ed in FIGURE 1.

The total number of mutated genes was sig‑
nificantly higher in patients with benign tumors 
(17 vs 11, P = 0.02). The mean total number of mu‑
tations per every specimen did not differ between 
groups (4.9 mutations per sample for the entire 
group; range, 1–9). The distribution of mutations, 
type of genetic changes (point mutations [single 
nucleotide variants: intron, missense, synony‑
mous variants] as well as duplications, insertions, 
and deletions), and the results of in silico analy‑
ses are presented in TABLE 3.

DISCUSSION In our study, we assessed the genet‑
ic alterations of indeterminate thyroid nodules in 
preoperative FNAB specimens, using a large NGS 
panel. The results showed that the genetic het‑
erogeneity of the FLUS and SFN samples in our 
patients corresponded with the heterogeneity of 
the final histopathologic diagnoses. A total of 17 
mutated genes were found. Also, the number of 
mutations in individual samples was high, with 
a mean of 4.9 mutations per sample. This hetero‑
geneity may be due to different routes of prolifer‑
ation and differentiation,16 driven by complete‑
ly different signals for benign and malignant di‑
agnoses,17,18 as well as tumor heterogeneity.19 
The latter can be divided into intertumor het‑
erogeneity, which shows diverse genetic altera‑
tions based on the tumor sites, and intratumor 
heterogeneity, which contains different genet‑
ic alterations within the same tumor.20 Intratu‑
mor heterogeneity may derive from specific mor‑
phohistologic features, whereas at the molecular 
level, clonal intratumor heterogeneity originates 
from genomic instability, and nonclonal, from 
a microenvironment interaction.21 An extreme‑
ly diverse genetic background, aggressive clone, 
and tumor heterogeneity in thyroid cancer have 
been described before.22‑24

The overall malignancy rate in our patients was 
28%. The previously described rates showed a con‑
siderable variation. For AUS / FLUS, the rates of 
12%,25 26.6%,26 and 29.9%27 were reported, and 
for FN / SFN, 10.6%,28 20.8%,29 32.6%,30 37%,31 
49%,32 and up to 53%.33 The discrepancies may 
relate to random variation, prior patient selec‑
tion such as through referral bias, or institutional 

To analyze a putative function of mutations as 
driver mutations, we used 4 separate programs: 
SIFT (Sorting Tolerant From Intolerant) algo‑
rithm,13 PolyPhen ‑2,14 MutationTaster2,15 as well 
as FATHMM (Functional Analysis through Hid‑
den Markov Models v2.3), which result in an in‑
dex, calculated with a high ‑throughput webserv‑
er, able to predict the functional consequences of 
coding variants (ie, nonsynonymous single nucle‑
otide variants) and noncoding variants to distin‑
guish between cancer ‑promoting or driver muta‑
tions and other germline polymorphisms.

The following databases were for the presence 
of particular mutations and their previous re‑
ports: COSMIC v89, dbSNP v151, 1000 Genome 
Project, ClinVar, and ExAC v1.0.

Statistical analyses The parameters were record‑
ed and entered into a dedicated database. Descrip‑
tive analysis was used to summarize the collected 
data. To determine the normality of continuous 
variables, data were tested by the D’Agostino and 
Pearson omnibus normality test. We expressed 
the variables that were found to be normally 
distributed as means and respective standard 
deviations. Data that were found to be distrib‑
uted otherwise were expressed as median and 
minimum–maximum values.

To compare differences between groups, 
the Fisher exact test (2 × 2 contingency table) 
for categorical variables was used. Interval data 
were compared using the Mann –Whitney test or 
the Kruskal –Wallis test with post ‑hoc Dunn tests 
because the data did not follow a normal distri‑
bution. Odds ratios (ORs) and 95% CIs were cal‑
culated using the group of patients diagnosed 
with follicular adenomas as the reference popula‑
tion. We assessed a correlation between the num‑
ber of mutations in a single patient and their age 
with the Pearson r correlation test and calculat‑
ed the concordance rates.

A P value of less than 0.05 was considered sig‑
nificant. All statistical analyses were performed 
with StatSoft Statistica v12.0 (StatSoft, Kraków, 
Poland) and Analyse ‑it for Microsoft Excel v3.53 
software (Analyse‑it, Leeds, United Kingdom).

RESULTS The most common final benign diag‑
nosis on histopathologic examination was a hy‑
perplastic nodule (n = 15; 60%), followed by a fol‑
licular adenoma (n = 3; 12%). The most common 
malignant diagnosis was papillary thyroid can‑
cer, diagnosed in 6 patients (24%): TNM stage 
pT1aN0M0 in 3 patients (50%) and pT2N0M0 in 
the other 3 patients (50%). The malignancy rate 
was 28% (18.8% and 44.4% for FLUS and SFN, 
respectively). The final malignant diagnosis more 
often coexisted with CLT than benign diagnosis 
(OR, 12; 95% CI, 1.16–123.69; P = 0.03; TABLE 2).

Any mutation from the  50 ‑gene Cancer 
Hotspot Panel v2 was identified in 14 patients, 
which constituted 56% of all FLUS and SFN sam‑
ples. The RET mutation was detected in 11 pa‑
tients (79% of the samples, regardless of the final 
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TP53).38‑40 The quality of DNA obtained from 
cytology specimens is considered to be better 
than that of formalin ‑fixed paraffin ‑embedded 
tissue.20 Besides, as previously reported, NGS can 
also provide information on routine smears that 
have suboptimal DNA input quantity and quali‑
ty as well as post ‑sequencing metrics.41

Ultrasound features considered to be predic‑
tors of malignancy do not allow a reliable differ‑
entiation between malignant and benign nod‑
ules,3 neither do the GEC or the ThyroSeq v2 
tests.42 Therefore, our goal was to identify nov‑
el genetic pathways potentially involved in FTC. 
KDR and RET (both present in 75% of samples), 
followed by TP53, were among the most common 
mutated genes found in our study in patients 
with a cancer diagnosis. KDR tended to be more 
common in malignant than benign samples, and 
as such, it appears to be a possible candidate as 
a genetic marker for malignancy. Its role was 
previously reported in breast cancer.43 KDR en‑
codes kinase insert domain receptor of the vas‑
cular endothelial growth factor, which acts as 
a mediator in the regulation of angiogenesis, vas‑
cular development, vascular permeability, and 
embryonic hematopoiesis, as well as promotes 
proliferation, survival, migration, and differen‑
tiation of endothelial cells. KDR gene mutations 
may play a major role in tumor angiogenesis.44

differences in pathologic interpretation.26 None‑
theless, the CIs reported in those series largely 
overlap with those in the current study, further 
supporting cancer incidence in FLUS and SFN 
shown by our group.

In recent years, significant advances have been 
made in thyroid cancer research. Molecular diag‑
nostics of thyroid nodules extend the initial di‑
agnostics of thyroid cancer, and molecular tests 
help distinguish between benign and malignant 
nodules, particularly in indeterminate FNAB re‑
sults (Bethesda III–V).2 The fast ‑evolving NGS 
technology offers a cost ‑effective approach in 
cancer genomics and thyroid cancer.20 The NGS 
has already been used to study indeterminate 
thyroid nodules also based on DNA acquired 
from preoperative FNAB specimens.27,34,35 How‑
ever, instead of commercially available thyroid‑
‑specific panels such as the 7 ‑gene panel test, 
which covers a limited number of gene altera‑
tions (BRAF and NRAS/HRAS/KRAS point mu‑
tations and RET/PTC and PAX8/PPARg translo‑
cations),36 or its successors (v2, v2.1, and v3),37 
we used a large NGS panel of not only thyroid‑
‑specific genes. The panel, in addition to BRAF, 
RAS, and RET hotspot mutations, covers nu‑
merous other genes involved in thyroid carci‑
nogenesis and malignant progression (eg, AKT1, 
APC, ATM, CTNNB1, PI3CKA, PTEN, RB1, and 

Benign final diagnosis n (%) Malignant final diagnosis n (%)

Sample number 8 9 16 18 19 20 21 22 23 24 10 (100) 11 15 17 25 4 (100)

APC 6 (60) 1 (25)

ATM 1 (10) 1 (25)

ERBB4 2 (20) 0

FGFR3 3 (30) 1 (25)

FLT3 6 (60) 1 (25)

HRAS 3 (30) 1 (25)

IDH1 1 (10) 0

JAK3 1 (10) 0

KDR 2 (20) 3 (75)

KIT 3 (30) 1 (25)

PDGFRA 5 (50) 1 (25)

PIK3CA 1 (10) 1 (25)

PTEN 1 (10) 0

RB1 1 (10) 0

RET 8 (80) 3 (75)

SMAD4 2 (20) 0

TP53 7 (70) 2 (50)

No. of mutations 4 4 6 8 5 5 5 1 8 7 ⌀ 5.3 1 4 2 9 ⌀ 4

 FLUS with benign final diagnosis

 SFN with benign final diagnosis

 FLUS with malignant final diagnosis

 SFN with malignant final diagnosis

FIGURE 1  Genetic landscape of mutation positive follicular lesions of undetermined significance (FLUS) and suspicious for follicular neoplasm (SFN) 
samples according to final histopathologic diagnosis (benign or malignant)
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766 TABLE 3 Mutations found in samples with benign and malignant final diagnosis on histopathologic examination with annotations and clinical significance (continued on the next page)

Gene AAE Type Alteration 
(physical 
location)

DNA changes Reference SNP COSMIC 
mutation ID

Clinical 
significance

Previously reported Benign final 
diagnosis 
(n = 10), 
n (%)

Malignant final 
diagnosis 
(n = 4), 
n (%)

APC p.G1494L Insertion and 
deletion: 
missense 
variant

Chr5: 112175770 c.4479_4480delGGinsAA; 
g.152553_152554delGGinsAA

rs1554085913 – Uncertain 
significance

Familial adenomatous polyposis 1 6 (60) 1 (25)

ATM p.P858L SNV: missense 
variant

Chr11: 108138003 c.2572T>C; g.49445T>C rs1800056 COSM21826 Benign / likely 
benign / 
uncertain 
significance

Ataxia telangiectasia syndrome
Hereditary cancer predisposing 

syndrome

1 (10) 1 (25)

ERBB4 NA SNV: intron 
variant

Chr2: 212812097 g.212812097T>C rs839541 – Not provided Not specified 2 (20) 0

FGFR3 p.T651T SNV: 
synonymous 
variant

Chr4: 1807894 c.1953A>G; g.17856A>G rs7688609 – Benign Not specified 3 (30) 1 (25)

FLT3 NA SNV: intron 
variant

Chr13: 28602292 g.28602292T>C rs75580865 – Not provided Not specified 6 (60) 1 (25)

NA SNV: intron 
variant

Chr13: 28610183 g.28610183A>G rs2491231 – Not provided Not specified

HRAS p.H27H SNV: 
synonymous 
variant

Chr11: 534242 c.81T>C; g.6309T>C rs12628 COSM249860 Benign Costello syndrome
RASopathy

3 (30) 1 (25)

IDH1 p.G105G SNV: 
synonymous 
variant

Chr2: 209113192 c.315C>T; g.22607C>T rs11554137 NOCOSMIC105 Benign Not specified 1 (10) 0

JAK3 p.V722I SNV: missense 
variant

Chr19: 17945696 c.2164G>A; g.18105G>A rs3213409 COSM34213 Benign / likely 
benign / 
likely 
pathogenic

Lymphoblastic leukemia, acute, with 
lymphomatous features

Severe combined immunodeficiency, 
autosomal recessive, T cell
negative, B cell positive, NK cell
negative

Acute megakaryoblastic leukemia

1 (10) 0

KDR p.G472H SNV: missense 
variant

Chr4: 55972974 c.1416A>T; g.23789A>T rs1870377 – Not provided Not specified 2 (20) 3 (75)

A Insertion and 
deletion: 
intron variant

Chr4: 55962546 g.55962547dup rs3214870 – Not provided Not specified
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TABLE 3 Mutations found in samples with benign and malignant final diagnosis on histopathologic examination with annotations and clinical significance (continued from the previous page)

Gene AAE Type Alteration 
(physical 
location)

DNA changes Reference SNP COSMIC 
mutation ID

Clinical 
significance

Previously reported Benign final 
diagnosis 
(n = 10), 
n (%)

Malignant final 
diagnosis 
(n = 4), 
n (%)

KIT p.M541L SNV: missense 
variant

Chr4: 55593464 c.1621A>C; g.74304A>C rs3822214 COSM28026
KIT 

COSM21983

Benign / likely 
benign

Gastrointestinal stroma tumor
Chronic myelogenous leukemia
Mastocytosis
Partial albinism

3 (30) 1 (25)

p.L546L SNV: 
synonymous 
variant

Chr4: 55593481 c.1638A>G; g.74321A>G rs55986963 COSM21983 Benign / likely 
benign

Gastrointestinal stroma tumor
Mastocytosis
Partial albinism

PDGFRA p.P567P SNV: 
synonymous 
variant

Chr4: 55141055 c.1701A>G; g.50792A>G rs1873778 – Benign Gastrointestinal stroma tumor
Idiopathic hypereosinophilic 

syndrome

5 (50) 1 (25)

p.V824V SNV: 
synonymous 
variant

Chr4: 55152040 c.2472C>T; g.61777C>T rs2228230 COSM22413 Benign Gastrointestinal stroma tumor
Idiopathic hypereosinophilic 

syndrome

PI3CA NA SNV: intron 
variant

Chr3: 178917005 g.178917005A>G rs3729674 – Not provided Not specified 1 (10) 1 (25)

p.T1025T SNV: 
synonymous 
variant

Chr3: 178952020 c.3075C>T; g.90710C>T rs17849079 COSM21451 Benign / likely 
benign

Cowden syndrome

PTEN p.A335T SNV: nonsense 
variant

Chr10: 89720852 c.1003C>T; g.102657C>T rs121909231 COSM5151 Pathogenic PTEN hamartoma tumor syndrome 1 (10) 0

RB1 p.L569L SNV: 
synonymous 
variant

Chr13: 49027140 c.1707A>G; g.154258A>G rs3092895 – Benign / likely 
benign /
uncertain 
significance

Retinoblastoma
Hereditary cancer–predisposing 

syndrome

1 (10) 0

RET p.L769L SNV: 
synonymous 
variant

Chr10: 43613843 c.2307G=; g.46327T>G rs1800861 – Benign Multiple endocrine neoplasia, type 2 8 (80) 3 (75)

p.S904S SNV: 
synonymous 
variant

Chr10: 43615633 c.2712C>G; g.48117C>G rs1800863 – Benign Not specified

SMAD4 NA SNV: intron 
variant

Chr18: 48586344 g.48586344C>T rs948588 – Not provided Not specified 2 (20) 0

TP53 p.P72A SNV: missense 
variant

Chr17: 7579472 c.215C>G; g.16397C>G rs1042522 – Drug response Li–Fraumeni syndrome 1
Li–Fraumeni syndrome
Hereditary cancer predisposing 

syndrome

7 (70) 2 (50)

Abbreviations: AAE, amino acid exchange; ID, identifier; NA, not applicable; SNP, single nucleotide polymorphism; SNV, single nucleotide variant
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Aiming to increase the homogeneity of the group 
and the reliability of results, we opted only for the 
FLUS and SFN samples.

In conclusion, our study shows that the het‑
erogeneity of the genetic alterations of indeter‑
minate thyroid nodules corresponds to its his‑
topathologic heterogeneity, which may be even 
higher for benign tumors. The role of KDR as a po‑
tential malignancy marker needs to be confirmed, 
as does the possible role of ERBB4, IDH1, JAK3, 
PTEN, RB1, or SMAD4 as the markers of indolent 
thyroid tumors. Glass slides with FNAB samples 
may constitute a reliable source of genetic materi‑
al for NGS analysis. The new genetic pathways for 
FTC should be searched for using new sequencing 
technologies, such as NGS with large gene pan‑
els, to improve our understanding of the genet‑
ics of thyroid nodules and its overlap with oth‑
er malignancies. Consequently, it may facilitate 
a more effective preoperative cancer diagnosis of 
thyroid nodules.
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