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to identify a rejection episode and provide prog­
nostic information as well as monitor the pro­
cess is desirable.4

It has been documented that cardiac surgery 
involves significant interaction between the cor­
onary endothelium and subsequent endothe­
lial progenitor cell (EPC) mobilization.5,6 On 
the other hand, HT is an exceptional illustration 

INTRODUCTION  Patients undergoing heart 
transplantation (HT) are at risk of experienc­
ing acute cellular rejection (ACR) or antibody­
‑mediated rejection (AMR), mainly observed with­
in the first year post-HT. Although ACR is a well­
‑recognized risk factor for an unfavorable prog­
nosis, data regarding AMR are not conclusive.1-3 
Thus, finding a new biomarker that could allow 
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ABSTRACT

INTRODUCTION  Endothelial progenitor cells (EPCs) in nontransplant settings have reparative properties. 
However, their role in heart transplantation (HT) is not well defined.
OBJECTIVES  The aim of this study was to prospectively evaluate changes in EPC levels in relation to 
post‑HT rejection.
PATIENTS AND METHODS  EPC levels were measured in 27 HT recipients for 6 months after HT. Acute 
cellular rejection (ACR) or antibody‑mediated rejection (AMR) were assessed by right ventricular en‑
domyocardial biopsy.
RESULTS  ACR and AMR were observed in 7 (25.9%) and 6 (22.2%) patients, respectively. The ACR 
status at 1 month post‑HT did not differ with respect to EPC immediately post‑HT. At 1 month post‑HT in 
patients without ACR or AMR, EPC levels were significantly reduced compared with the measurements 
immediately post‑HT (P <0.001). On further follow‑up, EPC levels were similar regardless of the rejection 
events. Nonetheless, greater changes (coefficient of variation) in EPClog (logarithmic transformation) 
were associated with the risk of AMR or ACR compared with those without any rejection event (median 
[lower–upper quartile], 15 [13–18] vs 8 [5–13]; P = 0.02 and 22 [14–26] vs 8 [5–13]; P = 0.01, respec‑
tively). The receiver operating characteristic curve showed that the coefficient of variation of EPClog 
of 12 was the optimal cutoff value for the prediction of rejection (area under the curve = 0.85). Higher 
levels were associated with greater risk of ACR or AMR (P <0.005).
CONCLUSIONS  Early reduction of EPC levels was related to a lower risk of ACR or AMR. Greater changes 
of EPC‑levels during follow‑up were associated with a significantly higher risk of rejection.
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Istanbul, and the ethical statement by the Inter­
national Society for Heart and Lung Transplanta­
tion. The study protocol was approved by the lo­
cal ethics committee. All patients signed the in­
formed consent form.

Acute rejection monitoring  The primary endpoint 
of the study was either ACR or AMR. ACR was de­
fined as ACR grade 2 or higher based on the right 
ventricular endomyocardial biopsy result ac­
cording to the International Society for Heart 
and Lung Transplantation classification.24 AMR 
was defined as AMR‑1H and / or AMR‑1I charac­
terized by histopathological changes.25 Patients 
were initially monitored for acute rejection week­
ly, and at 2, 3, 6, and 12 months post‑HT and 
categorized as follows: month 1 (from HT to 
month 1), month 3 (from month 1 to month 3), 
month 6 (from month 3 to month 6), and month 
12 (from month 6 to month 12). ACR or AMR 
was coded positive at the designed time inter­
vals if there was at least 1 positive biopsy with­
in the corresponding period. All clinical data 
regarding comorbidities and etiology of heart 
failure with reduced ejection fraction were ob­
tained from medical history, reflecting the pe­
riod prior to commencing the study. The etiolo­
gy of heart failure (HF) was classified as either 
ischemic or nonischemic. Neither human leuko­
cyte antigen nor donor‑specific antibodies were 
monitored prior or post HT, due to low risk of 
rejection. All patients had negative panel-reac­
tive antibody test results.

The information regarding efficient immuno­
suppression was available for 6 months follow­
ing transplantation. All patients were on a triple 
immunosuppression protocol, namely, (calcineu­
rin inhibitor [CNI; cyclosporine or tacrolimus]), 
proliferation inhibitor (mycophenolate mofetil), 
and tapering glucocorticoids regimen, without 
any induction prior to the HT. Efficient immuno­
suppression was coded as follows: optimal (levels 
of both immunosuppression agents [CNI, myco­
phenolate mofetil] within required range), sub­
optimal (level of at least 1 agent within required 
range), or nonoptimal (levels of both agents be­
low required ranges). Criteria of optimal dos­
es of immunosuppression were as follows: cy­
closporine 150 to 400 ng/ml (0–3 months post­
‑HT), 150 to 300 ng/ml (3–12 months post‑HT); 
tacrolimus 10 to 20 ng/ml (0–1 month post‑HT), 
5 to 15 ng/ml (1–12 months post‑HT); mycophe­
nolate mofetil 1 to 4 µg/ml.

Blood collection and isolation of peripheral blood 
mononuclear cells  Venous blood was drawn into 
tubes containing K3EDTA (Sarstedt, 01.1605.001, 
Nümbrecht, Germany) from all patients within 
12 to 24 hours post‑HT and at month 1, 3, and 6 
post‑HT before the biopsies. The peripheral blood 
mononuclear cells (PBMCs) were isolated from 
whole blood by Lymphoprep gradient centrifu­
gation (STEMCELL Technologies, 07851, Van­
couver, Canada). After washing, the cells were 

of the complexity of interactions involving endo­
thelium, ischemia / reperfusion (I/R), inflammato­
ry and immunologic activation.7 The endothelium 
is not a simple monolayer membrane. It can play 
a significant role not only in vasoregulation, an­
giogenesis, anticoagulation, and fibrinolysis but 
also in immune interaction.7 EPCs in nontrans­
plant settings have reparative properties. They ad­
here to the damaged endothelium and replace de­
stroyed cells, enhancing the healing processes.8-10 
In the case of transplantation, endothelial cells 
of the allograft undergo complex proinflamma­
tory alteration, which may lead to vascular leak­
iness,11 and during I/R the recipient’s immuno­
competent cells encounter the donor’s antigens 
located on endothelial cells.12 Thus, the allograft 
endothelium is perceived as a target for interac­
tion with circulating inflammatory factors, cyto­
kines, and antibodies,13 and in HT ischemic inju­
ry triggers stem cell mobilization to the donor’s 
graft.14,15 That is why the EPC homeostatic mech­
anism may be completely different from that ob­
served in standard settings.16 In such cases, EPCs 
would be exposed to different conditions, like 
I/R and a persistent transplantation‑related in­
flammatory environment. In consequence, their 
properties may be lost or altered.17 Therefore, it 
cannot be ruled out that graft rejection and sub­
sequent coronary vasculopathy may be a conse­
quence of an anomalous reparative mechanism 
of EPCs, secondary to foreign antigenicity18 and 
may ultimately require retransplantation.19 Nev­
ertheless, the role of EPCs in allograft rejection 
is not unequivocal.17 The available data are con­
tradictory, with some of the studies confirming 
an inverse association between the circulating 
EPCs and graft rejection,20-22 and others suggest­
ing that EPCs contribute to rejection.12,16,2 There­
fore, the aim of the study was to assess prospec­
tively the trajectory of EPCs and their association 
with allograft rejection episodes in HT recipients.

PATIENTS AND METHODS  Patients  This was 
a prospective observational single-center study 
including 27 patients undergoing HT at the In­
stitute of Cardiology (March 2015–February 
2017) who survived at least 6 months following 
the procedure. Patients on any kind of mechani­
cal support before transplantation were exclud­
ed. The study was conducted in accordance with 
the Declaration of Helsinki, the Declaration of 

WHAT’S NEW?

The current study presents the prospective evaluation of changes in endo‑
thelial progenitor cell levels following heart transplantation and their relation 
to rejection episodes. To our knowledge, it is the  first prospective study 
evaluating the level of endothelial progenitor cells in patients undergoing heart 
transplantation. Based on our data, we were able to document the potentially 
significant role of endothelial progenitor cells in heart transplantation rejection. 
The most important finding is that grater variation in the cell levels after heart 
transplantation is associated with higher risk of rejection.
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EPCs were defined as CD34+CD45dimVEGFR2+ 
and presented as a number of EPCs per 1 mil­
lion of PBMCs. On average, there were between 
200 000 and 1 million of living cells analyzed for 
each test.

Statistical analysis  The population character­
istics of patients and groups with and without 
ACR or AMR events were summarized as means 
(SD) or medians (Q1, Q3) for continuous vari­
ables and as percentages for categorical data. 
The differences between normally distributed 
data were tested by the t test or 1‑way analysis 
of variance. The familywise error rate was cor­
rected by post hoc Tukey–Kramers tests. Repeat­
ed measurements of EPClog between different 
time points (HT and month 1) were compared 
with the paired t test. Nonnormally distributed 
data were compared by the nonparametric test 
(the Kruskal–Wallis test and the Wilcoxon rank 
sum test). Categorical variables were compared 
by the Pearson χ2 test or the Fisher exact test.

The calculation of EPC levels was made after 
natural logarithmic transformation to correct for 
the skewed distribution. The dynamics of the EPC 
levels were analyzed by determining the coeffi­
cients of variation (CV) for the log‑transformed 
values measured during follow‑up.

A receiver‑operating characteristic curve analy­
sis was used to assess the cutoff point of the vari­
ability of EPC levels (CV EPClog) for prediction 
of rejection event (either ACR or AMR). The opti­
mal cutoff was defined as the value with the max­
imal sum of sensitivity and specificity. Time‑to­
‑event analyses were performed with the use of 
Kaplan–Meier estimates and were compared with 
the use of the long‑rank test. All hypotheses were 
2‑tailed with a type I error rate of 0.05. All statis­
tical analyses were performed using SAS statis­
tical software, version 9.4 (SAS Institute, Cary, 
North Carolina, United States).

RESULTS  Our study group included 27 patients 
who underwent HT. The population characteris­
tics are presented in TABLE 1. The majority of par­
ticipants were men (77.8%) and mean (range) 
age was 50.1 (18.8–66.8) years. The nonischemic 
etiology was the dominant primary cause of HF 
(59.3%). The median time since diagnosis of HF 
was nearly 5 years. During the 12‑month follow­
‑up, ACR (all events of grade 2) was recorded in 
7 cases (25.9%) and AMR in 6 cases (22.2%). All 
AMR were AMR1h+, there were no cases of AM­
R1i+. Our study group was characterized by nu­
merous comorbidities. Atrial fibrillation in pa­
tient history was the most prevalent comorbidi­
ty followed by ischemic heart disease, hyperten­
sion, and thyroid disorders. We did not observe 
higher frequency of comorbidities in the group 
with AMR or ACR experienced during 12 months 
of follow‑up. Post‑HT renal failure was recorded 
in 38.5% and 35.7% (P = 0.89), diabetes mellitus 
in 76.9% and 64.3% (P = 0.48), and hypertension 
in 53.8% and 42.9% (P = 0.58) of patients with 

frozen (10% dimethyl sulfoxide and 90% fetal 
bovine serum) and kept in liquid nitrogen until 
further analysis.

Flow cytometry  To avoid assay‑to‑assay variabil­
ity, all samples from a single patient were ana­
lyzed at the same time. On the day of analysis, 
cells were thawed and resuspended in a buffer 
(phosphate‑buffered saline with 40 mM Tris­
‑HCl at pH 8, 10 mM NaCl, 6 mM MgCl2, 1 mM 
CaCl2) containing 10 U/ml of DNAse (Sigma, 
DN25, St. Louis, Missouri, United States). Up to 
3 million of PBMC were stained with Zombie NIR 
Fixable Viability kit (BioLegend, 423 106, San 
Diego, California, United States) for 15 minutes 
at room temperature. Then, the FcR Blocking Re­
agent (Miltenyi Biotec, 130‑059‑901, Bergisch 
Gladbach, Germany) was added and the cells 
were incubated for 15 minutes at room temper­
ature. For surface markers detection, cells were 
stained with fluorescently labeled antibodies: 
CD34‑APC (BD Biosciences, 555824, Franklin 
Lakes, New Jersey, United States) CD45‑BV510 
(BD Biosciences, 563204) VEGFR2‑PE (BD Bio­
sciences, 560494) for 20 minutes at RT. After 
washing, cells were analyzed using flow cytom­
etry (FACSAria III, BD Biosciences). A fluores­
cence minus one control without a‑VEGFR2 an­
tibody was prepared for every sample.

TABLE 1  Population characteristics within 12 months of follow‑up

Variable Total group  
(n = 27)

ACR (+) or 
AMR (+) 
(n = 13)

AMR (–) and 
ACR (–) 
(n = 14)

P value

Age, y 56.4  
(46.3–60.7)

55.6  
(28.0–59.4)

56.9  
(48.2–62.2)

0.36

Heart failure 
morbidity, y

4.6 (2.0–8.5) 3.4 (1.7–8.4) 4.9 (3.5–8.5) 0.33

Male sex 21 (77.8) 11 (84.6) 10 (71.4) 0.65a

Ischemic etiology 11 (40.7) 6 (46.2) 5 (35.7) 0.58

Comorbidities

Coronary artery 
disease

11 (40.7) 5 (38.5) 6 (42.9) 0.82

History of atrial 
fibrillation

14 (51.9) 7 (53.8) 7 (50) 0.84

Hypertension 8 (29.6) 2 (15.4) 6 (42.9) 0.21a

Stroke / TIA 7 (25.9) 4 (30.8) 3 (21.4) 0.68a

Pulmonary 
embolism

3 (11.1) 0 (0) 3 (21.4) 0.22a

Thyroid disease 8 (29.6) 4 (30.8) 4 (28.6) 1.00a

Renal failure 7 (25.9) 3 (23.1) 4 (28.6) 1.00a

Pulmonary disease 
(COPD or asthma)

4 (14.8) 1 (7.7) 3 (21.4) 0.60a

Hyperuricemia 4 (14.8) 2 (15.4) 2 (14.3) 1.00a

Diabetes mellitus 3 (11.1) 1 (7.7) 1 (14.3) 1.00a

Peptic ulcer disease 3 (11.1) 1 (7.7) 1 (14.3) 1.00a

Data are presented as number (percentage) or median (Q1–Q3).

a  Fisher exact test

Abbreviations: ACR, acute cellular rejection; AMR, acute antibody mediated rejection; 
COPD, chronic obstructive pulmonary disease; TIA, transient ischemic attack
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We also analyzed the mean trends of EPC lev­
els and their variation at 1, 3, and 6 months in 
relation to either AMR or ACR in the course of 1 
to 12 months of follow‑up. During the analyzed 
period, mean levels of EPCs were alike, irrespec­
tive of ACR or AMR status (TABLE 4). Neverthe­
less, patients with ACR or AMR compared with 
those free from any kind of rejection had a signif­
icantly greater variation of EPC levels expressed 
by the CV within the analyzed intervals (P = 0.01 
and P = 0.02, respectively) (TABLE 4). Likewise, com­
bining the data for the AMR- or ACR-positive pa­
tients compared with those without any rejec­
tion episode did not change the results. There 
were no differences in age distribution among 
patients with ACR, AMR, or without any re­
jection event neither within 1 month post‑HT 
(median [Q1–Q3], 55.6 [49.1–60.8] years, 24.6 
[19.7–44.8] years, and 57.2 [47.9–60.3] years; 
P = 0.23, respectively) nor during further follow­
‑up (median [Q1–Q3], 58.4 [49.1–60.7] years, 
27.3 [20.6–56.9] years and 57 [48.2–62.2] years; 
P = 0.14, respectively). Likewise, gender distri­
bution was alike among the groups. The per­
centage of men was 66.7%, 75%, and 80% with­
in 1 month (P = 0.79) and 85.7%, 83.3%, and 
71.4% respectively (P = 0.84) during furhter fol­
low-up. The variation of EPC levels for each in­
dividual between the subsequent assessments of 
EPC levels during post‑HT follow‑up is present­
ed in FIGURE 1. To assess the ability of CV EPClog 
to distinguish those with either AMR or ACR, 

rejection (either AMR or ACR) and those free from 
rejection, respectively.

In the majority of cases, patients were on op­
timal or suboptimal immunosuppressive dosing 
during the entire follow‑up. Those who were at 
least once on optimal dosing and twice on subop­
timal dosing constituted 70% of the entire pop­
ulation, and there was no difference with regard 
to ACR (P = 0.60) or AMR (P = 0.14). Among pa­
tients on CNI, only 2 patients received tacrolim­
us and 1 experienced rejection (defined as either 
AMR or ACR) (P = 0.96). The stratification of EPC 
levels (at 1, 3, and 6 months post‑HT) according 
to the effectiveness of the immunosuppressive 
therapy into 2 subgroups, nonoptimal and sub­
optimal (combined due to very small numbers 
in the subgroups) as compared with optimal, re­
vealed no differences between the groups at any 
of the analyzed time points (TABLE 2).

We found, with respect to ACR status, that EPC 
levels did not differ significantly either immedi­
ately or after the first month post‑HT (TABLE 3). 
On the contrary, patients with AMR at 1 month 
had significantly lower levels of EPC immediate­
ly following HT, but there was no difference in 
EPC levels at 1 month. Moreover, patients with­
out ACR or AMR at 1 month had a decline in EPC 
levels at 1 month compared with the period im­
mediately after HT, which was not observed in 
those with either AMR or ACR. For the combined 
data (either with rejection or without any rejec­
tion events) results were alike.

TABLE 2  Comparison of endothelial progenitor cell levels by effectiveness of immunosuppressive therapy

Time of measurements Nonoptimal or suboptimal; EPClog (n = 13) Optimal; EPClog (n = 14) P value

1 month post‑HT 4.49 (0.97) 3.88 (1.43) 0.21

3 months post‑HT 4.6 (1.11) 4.81 (1.21) 0.64

6 months post‑HT 4.35 (1.50) 4.32 (1.07) 0.95

Data presented as means (SD) and analyzed by 2 independent samples t test

Abbreviations: HT, heart transplantation; EPClog, endothelial progenitor cells after logarithmic transformation

TABLE 3  Endothelial progenitor cells by rejection status within the first month following heart transplantation

Variable ACR (+)  
(n = 3)

AMR (+)  
(n = 4)

ACR (–) and AMR (–) 
(n = 20)

P valuee P valuef 

ACR (+) vs 
ACR (–) and AMR (–)

P valuef 

AMR (+) vs 
ACR (–) and AMR (–)

EPClog HT 5.14 (1.55) 3.81 (1.01) 5.30 (0.88) 0.033 0.97 0.025

EPClog M1 4.97 (0.59) 3.69 (1.33) 4.15 (1.29) 0.42 – –

ΔEPClog M1 – HT –0.17 (1.98)a,b –0.12 (1.30)a,c –1.15 (1.18)a,e 0.22 – –

Variable ACR (+) or AMR (+)  
(n = 7)

ACR (–) and AMR (–)  
(n = 20)

P valueg

EPClog HT 4.38 (1.34) 5.30 (0.88) 0.048

EPClog M1 4.24 (1.21) 4.15 (1.29) 0.88

ΔEPClog M1 – HT –0.14 (1.47)a,d –1.15 (1.18)a,e 0.08

Data presented as means (SD).

a  Paired t test for the difference between M1 and HT;     b  P = 0.90;     c  P = 0.87;     d  P = 0.81;     e  P <0.001;      
e  One‑way ANOVA;     f  Post‑hoc Tukey–Kramer test;     g  Two independent samples t test

Abbreviations: ACR, acute cellular rejection; AMR, acute antibody mediated rejection; ΔEPClog M1–HT, difference in EPClog between M1 and HT; HT, 
within 24 hours post transplantation; M1, at 1 month post transplantation; others, see TABLE 2
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endothelial dysfunction and chemo‑attraction 
of leucocytes / inflammatory cells to cardiac and 
extracardiac sites.5,29 Blood reperfusion is cru­
cial for the restoration of the metabolic func­
tion; however, it is associated with increased re­
active oxygen‑nitrogen species production and 
inflammation reaction, which may lead to a lo­
cal and remote injury.30 In fact, endothelial dys­
function / injury is a recognized player in multi­
factorial mechanisms of I/R injury.31 Studies eval­
uating the EPC during I/R documented not only 
a mobilization of EPC5,6 but also their protective 
role during ischemic events after the administra­
tion of genetically modified EPC32 or arginine.33

AMR is recognized as histologic evidence of 
a capillary injury, whereas ACR is diagnosed when 
interstitial and / or perivascular infiltration along 
with myocyte damage is observed.24 Thus, in both 
cases, vascular and primarily endothelial inju­
ry is the initial pathophysiological mechanism. 
The process of recipient EPC engraftment into 
the donor’s endothelium is well established in 
renal and cardiac transplantation.34,35 In animal 
models, evaluation of the endothelial regenera­
tion of the allograft by the recipient’s EPC brought 
conflicting results.15,36 However, in the majority 
of human studies, endothelial chimerism was de­
tected in almost one‑fourth of the cells in trans­
planted human hearts.34,37 In another study eval­
uating EPC chimerism in renal transplants, re­
searchers identified the donor’s endothelium re­
placement by the recipient’s cells to be a marker 
of rejection.35 Moreover, in cases of severe rejec­
tion, the vascular endothelium is damaged and 
replaced by a recipient’s EPCs.35 All of these ob­
servations are in line with our findings regarding 
AMR. In the case of AMR, which can take place 
at any time, even within the first few days post­
‑transplantation, low numbers of EPCs observed 
in our patients immediately post‑I/R injury might 
not offer sufficient protection from a cascade of 
events leading to AMR.

It has been postulated that the immunolog­
ic vascular‑endothelial injury in acute rejection 
events and the associated activation of numerous 

area under the receiver operating characteristic 
curve was generated showing significantly predic­
tive value (area under the curve, 0.85) (FIGURE 2). 
The annual event‑rate (ACR or AMR) in patients 
with CV EPClog greater than 12 (n = 16), was high­
er compared with those with CVEPClog of 12 or 
less (n = 11) (0.79 vs 0.09; P = 0.005), as shown 
by the Kaplan–Meier analysis (FIGURE 3).

DISCUSSION  Our study was designed to inves­
tigate the potential role of EPC levels and their 
variation in ACR and AMR after HT. We found 
that higher levels of EPC within 24 hours post­
‑HT were protective with respect to AMR during 
the first month. Conversely, with regard to ACR, 
both groups, regardless of their rejection status, 
were alike. Nevertheless, a greater reduction in 
EPC levels at 1 month was associated with a low­
er risk of ACR. During further follow‑up, a great­
er variation of EPC increased the risk of both 
ACR and AMR.

In our study, EPCs were defined and evaluated 
as described by Van Craenenbroeck et al,26 that 
is, CD34+CD45dimVEGFR2+. Although some 
reports indicate that CD133 might be a valuable 
marker of immature EPCs, there are also discrep­
ant findings. As summarized by Fadini et al,27 
CD34+CD133+KDR+ cells develop into hemato­
poietic colonies, whereas the CD34+CD45– pop­
ulation forms endothelial colonies in vitro. More­
over, it has been reported that CD34+KDR+ cells 
show a better relationship with coronary artery 
disease and response to statin therapy if restrict­
ed to the CD45dim gate.28 As stated by Van Crae­
nenbroeck et al,26 “The major drawback is the fact 
that CD34+/KDR+/CD45dim cells only constitute 
between 0.0001 and 0.01% of PBMCs, so their 
flow cytometric quantification becomes a tech­
nical challenge.” Pre‑analytical sample handling, 
data acquisition and analysis must be taken into 
account and standardized to encounter a reliable 
and reproducible enumeration.

Ischemia and reperfusion during cardiac 
surgery produce a major insult to the vascula­
ture and along with inflammation may lead to 

TABLE 4  Endothelial progenitor cells by rejection status during follow‑up between month 1 and 12

Variable ACR (+)  
(n = 7)

AMR (+)  
(n = 6)

ACR(–) and AMR(–)  
(n = 14)

P value a P valuea 

ACR (+) vs 
ACR (–) and 
AMR (–)

P valuea 

AMR (+) vs 
ACR (–) and 
AMR (–)

EPCLog 4.50 (4.18–4.89) 4.21 (3.07–4.40) 5.16 (3.87–5.29) 0.28 – –

CV EPClog 22 (14–26) 15 (13–18) 8 (5–13) 0.006 0.01 0.02

Variable ACR (+) or AMR (+)  
(n = 13)

ACR (–) and AMR (–)  
(n = 14)

P valueb

EPCLog 4.40 (4.13–4.87) 5.16 (3.87–5.29) 0.15

CV EPClog 18 (13–22) 8 (5–13) 0.02

Data are presented as median (lower quartile–upper quartile).

a  Kruskal–Wallis test;     b  Wilcoxon rank sum test

Abbreviations: CV, coefficient of variation for the measurements between 1–6 months of follow‑up; EPClog, endothelial progenitor cells after 
logarithmic transformation during 1–6 months of follow‑up; others, see TABLE 3



POLISH ARCHIVES OF INTERNAL MEDICINE  2019; 129 (12)894

of EPCs and an increased risk associated with 
post‑HT vasculopathy.18,37,43 Interestingly, pa­
tients with vasculopathy had lower EPC levels 
compared with patients with preserved vascular 
function, postulating a defective mobilization 
mechanism.43 Of note, in those studies, time of 
assessment was chosen individually,37,43 and nei­
ther of the studies evaluated EPCs prospectively 
and limited the assessment to a randomly cho­
sen interval from HT.16,37,43 Therefore, no infor­
mation regarding an earlier rejection status and 
changes in EPC levels was provided. Much less is 
also known about the potential correlation be­
tween EPC and the risk of either ACR or AMR dur­
ing the early phase following transplantation.16 

cytokines and chemokines stimulate migration 
of progenitor cells to the site of injury.38 In fact, 
ACR was related with endothelial dysfunction39 
regardless of the time of testing. On the other 
hand, it has been suggested that EPCs are mobi­
lized from the recipient’s bone marrow and seed­
ed into the microcirculation of the allograft dur­
ing an immunologically related myocardial inju­
ry.40 In renal transplantation, the replacement of 
donor’s endothelial cells and its association with 
vascular and interstitial rejection is document­
ed.35,41 Therefore, it cannot be excluded that EPCs 
may play a significant role in rejection and vascu­
lopathy processes also in HT.18,42 Indeed, the ma­
jority of studies postulated an unfavorable role 

FIGURE 1�  Changes in 
endothelial progenitor cell 
(EPC) levels (logarithmic 
transformation) after heart 
transplantation (HT) for 
each patient. 
Abbreviations: HT, within 
24 hours post‑HT; 
M1, at 1 month post‑HT; 
M3, at 3 months post‑HT; 
M6, at 6 months post‑HT; 
others, see TABLE 3
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of EPC levels with the renal graft function or car­
diovascular event‑free survival.44,45 Moreover, 
it was shown that EPC levels were not associat­
ed with gender, age, acute allograft rejection,44 
and immunosuppressive regiment44,45; however, 
the time frame from transplantation with respect 
to EPC sampling was not precisely defined.44,45

Contrary to the renal model, in HT, most of 
the data suggest an unfavorable role of EPC in 
modifying the rejection risk post‑HT.16,42,43,46 In 
those studies, a detrimental effect of elevated EPC 
or function  with respect to the risk of acute re­
jection was recognized.16,42,46 Decreased level of 
EPCs was not associated with a microvascular 

An interesting observation was made in one study 
evaluating EPC fluctuation immediately follow­
ing renal transplantation.23 The authors observed 
a significant reduction in EPC levels within hours 
post‑renal transplantation compared with preop­
erative testing, with a steady increase thereafter. 
However, and still in line with our observations, 
in patients with preserved allograft function, EPC 
level reduction was much more pronounced.23 It 
might be speculated that EPC contribution is im­
portant in the endothelial repair immediately af­
ter I/R injury. On the other hand, in some studies 
regarding a renal transplant model, the opposite 
was documented, showing a positive association 

FIGURE 2�  A receiver
‑operating characteristic 
curve testing 
the diagnostic value of 
variability of endothelial 
progenitor cell levels after 
logarithmic transformation 
in predicting a rejection 
event (acute cellular 
rejection or acute 
antibody mediated 
rejection)
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FIGURE 3�  Kaplan–
Meier curves for the acute 
cellular rejection or acute 
antibody mediated 
rejection‑free survival in 
patients after heart 
transplantation according 
to variability of 
the endothelial progenitor 
cell levels 
Abbreviations: see 
TABLE 4
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dysfunction43 and EPCs impaired function was 
suggested as a  mechanism preventing rejec­
tion.16,46 On the contrary, there is also evidence 
that high levels of chimerism involving a recip­
ient’s EPCs might offer protection against graft 
failure.34 In a recent analysis, the authors evaluat­
ed the association between the ratio of regulato­
ry T cells (Tregs) and EPC representing the equi­
librium of the 2 opposing mechanisms. The main 
finding of this study was that lower Treg-to-EPC 
ratio was related with rejection risk during a long­
‑term follow‑up.42 Thus, an increase in EPCs level 
was associated with an increased risk of rejection.

Neither of the HT studies tested EPC levels or 
function prospectively. At the same time, it was 
postulated that the pathogenesis of endotheli­
al dysfunction during follow‑up suggests an epi­
sodic nature of the immunologic injury.39 There­
fore, in this respect, our study is unique in provid­
ing information regarding EPC trajectory during 
the first 6 months post‑HT. Based on our results, 
and in agreement with previous reports,16,42,43,46 
we may speculate that EPC levels, and especial­
ly their dynamic changes during follow‑up, may 
not play the role of a bystander but be actively in­
volved in pathological processes post-HT.

Limitations  Interpretation of the presented re­
sults must be viewed in the context of some limi­
tations. It was a single‑center study and our study 
sample was small, although we were still able to 
find a significant association between the changes 
of EPC and rejection risk. Secondly, during post­
‑HT follow‑up, many factors, including pharma­
cotherapy and various complications, could po­
tentially provide some bias. Nevertheless, our 
methodology in this respect is in agreement with 
previous publications. It must be also stated that 
despite the prospective nature of our study, our 
results do not provide a clear clinical implication 
as the major conclusions were limited to dynamic 
changes during longer follow‑up post‑HT.

Conclusions  Assessment of dynamic changes in 
EPC levels following HT brings important infor­
mation with regard to the risk of ACR and AMR. 
The dynamic changes in the levels of EPCs ob­
served within 6 months post‑HT were associat­
ed with the risk of rejection. Although we are not 
able to show a direct causative effect of the chang­
es of EPC levels in relation to the risk of rejec­
tion, the obtained data implicate a significant 
role of EPCs in the pathological processes after 
HT. It may suggest the important role of EPC lev­
els and their fluctuation in the rejection process; 
however, it requires further studies. Elucidating 
the mechanisms of this phenomenon in the fu­
ture may enhance the prevention of graft rejec­
tion and failure.
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