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a pathological state, the epicardial fat releases var‑
ious proinflammatory and proatherogenic medi‑
ators, which affects the function of the coronary 
artery, increases immune infiltrate, and contrib‑
utes to inflammatory burden.5,6 Interestingly, 
it has been observed that coronary atherosclerot‑
ic plaques originate mainly in arteries surround‑
ed by epicardial fat7 and that DM significantly in‑
creases plaque burden when compared with peo‑
ple without diabetes.8

In addition, epicardial fat in patients with CAD 
demonstrates higher mRNA expression of genes 
involved in the activation of inflammatory, im‑
munological, and metabolic pathways.7 Haberka 
et al4 have found that among patients with CAD, 
DM was associated with a more dysfunctional 
profile of mRNA expression in the adipose tis‑
sue surrounding the myocardium, manifested 
by a downregulation of the fibroblast growth fac‑
tor 21 (FGF21) and an upregulation of the recep‑
tor for advanced glycation end‑products (RAGE).

FGF21 belongs to the FGF family of proteins 
and is mainly produced in the liver. The expression 
of this peptide hormone occurs in the adipose tis‑
sue where it plays a pivotal role in the regulation 
of glucose uptake. The serum level of FGF21 is el‑
evated in many CV diseases and is believed to be 
protective in conditions associated with hyperlip‑
idemia, obesity, and diabetes.9 Haberka et al4 have 
found that paracardial and epicardial fat collect‑
ed from diabetic patients had lower mRNA ex‑
pression of FGF21. This reduction may contrib‑
ute to a decline in a local level of FGF21 and af‑
fect its cardioprotective role shown in many stud‑
ies. The administration of FGF21 reduces plas‑
ma glucose levels and triglycerides in obese and 
diabetic animals,10 suppresses the development 
of atherosclerosis in apolipoprotein E knockout 
(apoE–/–) mice,11 and protects the heart after myo‑
cardial ischemia-reperfusion injury.12 In clinical 
trials, the administration of synthetically engi‑
neered FGF21 variants, such as LY2 405 319 and 
PF‑05 231 023, resulted in beneficial changes in li‑
poprotein profile, body weight, lipid, insulin, and 
adiponectin levels in obese diabetic patients.13 

The association between obesity and cardiovas‑
cular (CV) diseases has been well established.1 
Obesity accelerates both the progression of ath‑
erosclerosis and cardiac remodeling and increas‑
es the risk of associated diseases such as stroke 
or heart failure. This is in part mediated by its ef‑
fects on common risk factors, for instance, glu‑
cose intolerance, diabetes, hypertension, as well 
as dyslipidemia.1,2 CV dysfunction in both obesi‑
ty and diabetes is therefore multifactorial. Major 
mechanisms include insulin resistance, inflamma‑
tion, and endothelial and cardiac dysfunction.3

In the present issue of Polish Archives of Inter-
nal Medicine (Pol Arch Intern Med), Haberka et al4 
present a cross‑sectional study, in which the pa‑
rameters of epicardial fat were studied in patients 
with multivessel coronary artery disease (CAD), 
comparing patients with and without concomi‑
tant diabetes mellitus (DM). They elegantly ana‑
lyzed the volume of epicardial fat using magnet‑
ic resonance imaging and then defined epicardial 
fat dysfunction based on a comprehensive anal‑
ysis of mRNA profiles for major factors linked to 
the inflammatory and metabolic dysregulation 
of fat. Despite similar clinical and anthropomet‑
ric characteristics, the authors observed a higher 
deposition of epicardial fat in patients with dia‑
betes, while other fat depots—such as paracar‑
dial or perivascular fat collected from the thorax 
or the internal mammary artery, respectively—
remained unchanged. This observation may in‑
dicate the unique properties and specific impor‑
tance of epicardial fat in the progression of CAD 
in patients with diabetes.

It has been well established that the adipose 
tissue, as an endocrine organ, plays an impor‑
tant role in homeostasis in the course of CV dis‑
ease.5,6 Epicardial fat, located between the heart 
and the pericardium, surrounds the coronary 
arteries. Physiologically, this unique fat depot 
is crucial for various functions such as thermo‑
regulation, mechanical protection, metabolism 
of free fatty acid, and secretion of bioactive fac‑
tors involved in endothelial function, coagula‑
tion, and protection against inflammation.7 Yet in 
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These studies support the observations made by 
Haberka et al4 and may suggest that such ther‑
apies could be tested in vascular disease in dia‑
betes and concomitant CAD. In contrast, the re‑
cent work by Shen et al14 shows that an elevated 
serum FGF21 level in patients with CAD was as‑
sociated with a greater risk for developing major 
adverse cardiovascular events, which clearly indi‑
cates that further clinical studies on larger popu‑
lations are needed.

Interestingly, increased expression of RAGE in 
CAD patients with DM was observed only in epi‑
cardial fat and not in other fat depots. This could 
suggest an important role of this tissue in potenti‑
ating the progression of CAD in diabetic subjects, 
although it is surprising, considering the classic 
role of visceral fat in diabetes. Increased level of 
RAGE is associated with the worst prognosis in 
patients with CV disease. Experimental studies15 
show that RAGE is upregulated in key injuries to 
the heart, including ischemia-reperfusion injury, 
diabetes, and inflammation. Furthermore, in ath‑
erosclerosis, RAGE influences leukocyte recruit‑
ment into the intima to a great extent. In both 
diabetic and nondiabetic models of atherosclero‑
sis, the role of RAGE has been well established. 
Increased mRNA expression of RAGE was found 
in streptozotocin‑induced diabetic apoE–/– mice. 
This was accompanied by the progression of ath‑
erosclerotic lesions and sustainment of proinflam‑
matory and prothrombotic pathways. In contrast, 
the knockout of RAGE was associated with reduc‑
tion of atherosclerotic plaque, decreased accumu‑
lation of immune cells, and attenuated expression 
of inflammatory cytokines in apoE–/– mice. Simi‑
lar effects were obtained after pharmacologic in‑
hibition with anti‑RAGE antibodies.16

Another interesting observation presented by 
Haberka et al4 is that none of the adipose tissue 
mRNA expression levels correlated with circulat‑
ing plasma protein levels. This emphasizes that 
in humans, a level of plasma inflammatory bio‑
markers might not reflect a local inflammation 
sufficiently well. Given the lack of a clear separa‑
tion barrier between the epicardial fat and myo‑
cardium and, further, common vascularization 
from the coronary artery, the local interaction 
between these two tissues may be more impor‑
tant than suspected.

Taken together, the blockade of ligand–RAGE 
axis and / or exogenous FGF21 therapy could be 
a useful therapeutic approach, particularly for pa‑
tients with DM. However, these findings raise fur‑
ther questions. Do the changes in gene expression 
levels correlate with their products in epicardial 
fat? And more importantly: do these changes in 
expression carry clinical significance for progno‑
sis? To answer these, larger populations need to 
be studied, but it is essential to consider future 
therapeutic targeting of these processes.
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