The necessity of prevention and treatment in the population of adolescents
based on a comprehensive assessment of their health:
the SOPKARD-Junior survey

Authors: Klaudia Suligowska, Piotr Czarniak, Anna Pakalska-Korcala, Konrad Drewek,
Robert Sabiniewicz, Adrian Maj, Ewa Król, Tomasz Zdrojewski

Article type: Special article

Received: January 16, 2020.

Accepted: March 27, 2020.

Published online: April 6, 2020.

ISSN: 1897-9483

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA4.0), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at pamw@mp.pl.
The necessity of prevention and treatment in the population of adolescents based on a comprehensive assessment of their health: the SOPKARD-Junior survey

Authors:

Klaudia Suligowska¹,², Piotr Czarniak³, Anna Pakalska-Korcala⁴, Konrad Drewek⁵, Robert Sabiniewicz⁶, Adrian Maj⁷, Ewa Król⁸, Tomasz Zdrojewski¹

1. Department of Preventive Medicine and Education, Medical University of Gdansk, Gdańsk, Poland.
2. Department of Dental Techniques and Masticatory System Dysfunctions, Medical University of Gdansk, Gdańsk, Poland.
3. Department of Pediatrics, Nephrology and Hypertension, Medical University of Gdansk, Gdańsk, Poland.
4. Mental Health Clinic for Children and Adolescents, Gdansk Medical Centre, Gdańsk, Poland.
5. Department of Trauma and Orthopedic Surgery, Medical University of Gdansk, Gdańsk, Poland.
6. Department of Pediatric Cardiology and Congenital Heart Disease, Medical University of Gdansk, Gdańsk, Poland.
7. Department of Periodontology and Oral Mucosal Diseases, Medical University of Gdansk, Gdańsk, Poland.
8. Department of Nephrology, Transplantation Medicine and Internal Diseases, Medical University of Gdansk, Gdańsk, Poland.

Short title: The necessity of prevention in the population of adolescents.
Corresponding author: Tomasz Zdrojewski, M.D., Ph.D., professor MUG, Acting Head, tz@gumed.edu.pl, tel: (58) 349 1975; Department of Preventive Medicine and Education, Medical University of Gdansk, 80-211 Gdansk, ul. Debinki 7, Poland

Conflict of interest: none declared

Piotr Czarniak – piotr.czarniak@gumed.edu.pl, Anna Pakalska-Korcala annapakalska@wp.pl, Konrad Drewek – konrad.drewek@gumed.edu.pl, Robert Sabiniewicz – robert.sabiniewicz@gumed.edu.pl, Adrian Maj – adrian.maj@gumed.edu.pl, Ewa Król – ewa.krol@gumed.edu.pl, Tomasz Zdrojewski – tz@gumed.edu.pl
Introduction

One of the most important goals of any health policy should be to protect the health of children and adolescents [1]. Preventive strategies in the population aged 18 years or younger have two basic goals: the detection of diseases at the earliest stages and the search for risk factors of civilization diseases. This is crucial because prevention among young people will make it possible to reduce the incidence of many diseases throughout a person's life. The number of studies assessing the prevalence of individual diseases in adolescents is increasing, while epidemiological studies that would assess the health of children and adolescents in a holistic way are still missing. The lack of a comprehensive assessment of the state of health with simultaneous search for risk factors of civilization diseases in this population precludes the implementation of holistic screening models and, consequently, adequate preventive measures.

The main objective of the study is to comprehensively assess the health status of adolescents and to identify needs in the area of prevention and therapy. Understanding these needs will allow for the development of an optimal model of screening assessments and basic educational activities for teenagers. Therefore, an additional goal of the study is to propose a panel of screening assessments based on the epidemiological situation of adolescent health.

Patients and methods

The study was carried out from October to December 2013 and from October to December 2014 as part of two editions of the "Program for the early detection of risk factors for civilization diseases SOPKARD-Junior". All students having attended junior high school in Sopot schools in the given year were invited to participate. Participants of the study were recruited in September 2013 and September 2014, accordingly. The city of Sopot was chosen because of its proximity to the Medical University of Gdansk (MUG) and the University
Clinical Centre (UCC) in Gdansk and very good cooperation with the local government that has supported this project for many years.

Anthropometric and blood pressure measurements, echocardiographic, orthopedic, psychological-psychiatric and dental assessments as well as biochemical blood and urine tests were performed. Orthopedic, echocardiographic, psychologic-psychiatric and dental assessments were performed by doctors with experience in the specific area. Generally, the assessments in the SOPKARD-Junior program have been designed to enable identification of three groups of children:

group 1 - in which the teenager's result was within the age norm,
group 2 - in which the teenager's result was borderline values,
group 3 - in which a teenager was diagnosed disease / abnormal result.

A detailed methodology of this study, which is part of the SOPKARD-Junior program, has been described previously [2].

Anthropometric assessment included measurements of height and body mass, and calculation of the body mass index (BMI) \[\text{BMI} = \frac{\text{weight (kg)}}{\text{height (m)}^2}\]. Obtained results of measurements were related to centile charts valid for the Polish population [3]. Adolescents with normal body weight (> 5 <85 percentile) were included in Group 1, adolescents with overweight (≥85 and <95 percentile) and underweight (> 3 and ≤5 percentile) – in Group 2; while adolescents with obesity (≥95 percentile) or malnutrition (≤3 percentile) – in Group 3.

Blood pressure (BP) values were measured three times during one visit, at intervals of 2 minutes. The mean of the second and third readings was used for in the analysis. The mean systolic and diastolic blood pressures were compared with the up-to-date centile charts for the Polish population [4]. The mean BP values below the 90th percentile were assumed to be normal. The mean blood pressure values ≥90 and <95 percentile were qualified as high
normal, and the mean BP values ≥ 95th percentile were considered as elevated. Finally, adolescents whose mean values of both systolic and diastolic pressure were within the normal range were included in Group 1. Group 2 included adolescents whose mean systolic or diastolic blood pressures were high normal. Group 3 included adolescents with elevated mean values of systolic or diastolic blood pressure.

Echocardiographic (ECHO) and electrocardiographic assessment (ECG) was performed with the GE Vivid 95E Cardiac Ultrasound System (standard views in 2D-mode, M-mode and color Doppler mode) with simultaneous recording of one ECG lead. The results obtained were compared with weight-specific norms. Based on the echocardiographic examination, adolescents were classified into three groups: Group 1 – adolescents without any abnormalities; Group 2 – adolescents with abnormalities of low hemodynamic significance, such as patent foramen ovale (PFO), pulmonary insufficiency (PI), tricuspid insufficiency (TI), which may worsen in the future and therefore require periodic cardiac assessments; and Group 3 – adolescents with newly diagnosed or pre-existing heart disease requiring cardiac care (heart defects, cardiomyopathies, aortic insufficiency (AI), mitral insufficiency (MI)).

Diagnosis of caries as part of a dental examination was performed using the visual-tactile method. With patient’s mouth illuminated by the front electric lamp, the diagnostic kit (a World Health Organization (WHO) periodontal probe and dental mirror) was used for the detection of caries (primary and secondary lesions were diagnosed where the cavity was softer than the tooth tissue, excluding stains and discoloration of non-caries origin and developmental disorders of the enamel), fillings and teeth removed due to caries [5]. Group 1 included adolescents who had never suffered from caries (D + M + F = 0, where D stands for Decayed, M stands for Missing, and F stands for Filled), Group 2 was composed of adolescents without active carious process (D = 0), but with at least one filling (F> 0) and/or tooth lost due to caries (M> 0), and Group 3 included adolescents with active caries (D + M +
F> 0, where D> 0; M≥0; F≥0). The data obtained were recorded in the dental chart, and then subjected to analysis, the aim of which was to assess the DMF index and the frequency of caries (Group 2 + 3) in students participating in the study.

Blood samples were collected from every subject after 8–12 hours of fasting and an overnight rest. First morning urine specimens were delivered the same day in the container received at the initial meeting. The following biochemical tests were performed: C-reactive protein, electrolytes, thyroid-stimulating hormone, creatinine, total cholesterol (TC), high-density cholesterol (HDL cholesterol), triglycerides (TG), blood glucose, and peripheral blood cell count. Low-density cholesterol (LDL cholesterol) level was calculated using the Friedewald formula [6]. A urinalysis was performed and potassium, sodium, creatinine and albumin levels were determined in the morning urine specimen. All assays were performed at the Central Clinical Laboratory of the UCC in Gdansk, which is recorded in the Register of the National Chamber of Laboratory Diagnostic, No. 1661.

Each result of a biochemical test was assigned to one of the three groups: Group 1 – results within the normal range for age; Group 2 - when it was between normal concentration and abnormal concentration (borderline values); Group 3 – abnormal result.

Measured values of total cholesterol (TC), triglyceride (TG), HDL cholesterol and LDL cholesterol were used to assess the cardiovascular risk. According to the National Education Cholesterol Program (NCEP) experts, the results of children and adolescents are classified into three groups: normal acceptable, borderline and elevated values according to centile charts [7, 8]. The purpose of the carbohydrate metabolism evaluation was to determine fasting glucose levels. If after the first determination the result did not fit into the reference values (≥100 mg/dL) [9], the adolescents was invited again for additional measurement (second step). The thyroid stimulating hormone (TSH) assays were used to assess thyroid
function [10]. In order to find the earliest indicators of kidney damage, the urinary albumin-to-creatine ratio (UACR) [11, 12] was used and additionally serum creatinine and general urinalysis were assessed. The reference values that allow classifying the results obtained to particular groups are presented in Table 1.

Table 1. Reference values for total cholesterol, triglycerides, HDL-cholesterol, thyroid-stimulating hormone, blood glucose and urinary albumin-to-creatine ratio (UACR) used for classification into the following groups: Group 1 with normal values, Group 2 with borderline values, Group 3 with elevated values.

During orthopaedic assessment, the body posture was evaluated both statically and dynamically, with particular emphasis on the foot and ankle. Adolescents who did not show any deviations from the age norm (normal-arched foot posture or stage I pes planovalgus) were qualified to Group 1. Group 2 included adolescents with stage II and III pes planovalgus with generalized soft tissue laxity (Marshall Test) in whom complete correction was observed in unloaded state and dynamic testing. Group 3 included adolescents with uncorrectable flat foot (including those with incomplete correction), contracture of the gastrocnemius muscle, asymmetric valgus deformity and other diseases of the musculoskeletal system requiring further diagnosis and treatment.

As part of psychological and psychiatric assessment, the severity of depressive symptoms and the prevalence of depression were evaluated. In the first step, the Beck Depression Inventory was administered to all the examined adolescents. In the second step, students with depressive symptoms were invited to undergo a psychiatric examination. As a result of these assessments, three groups of adolescents were distinguished: Group 1 – healthy children who showed no depressive symptoms in the screening test, Group 2 – adolescents at risk who showed depressive symptoms in the screening test (Beck Depression Inventory
score > 10 points), and Group 3 – adolescents who were diagnosed with clinical depression based on medical psychiatric examination. Adolescents with depressive symptoms who did not report for a clinical evaluation to a child psychiatrist were qualified to Group 2.

Data regarding the occurrence of individual health problems were supplemented on the basis of detailed interviews with the parents of children. Parents filled out a questionnaire containing questions about chronic diseases in their child. If the parent said that the child, for example, had diabetes, he or she was automatically qualified to Group 3. The final overall assessment of the health status of each child was performed by statistically analyzing the results using the weighted burden analysis. Group 1 was assigned the weight of 100 points, Group 2 – 50 points, and Group 3 – 0 points. The obtained scores were summed up and the arithmetic mean was calculated for each child. Adolescents who participated in at least 5 assessments were included in the analysis. The program has been approved by the Independent Bioethics Committee and assigned the numbers NKEBN/510/2006, NKEBN/510-350/2007, NKEBN/510-364/2009, NKBBN/510-249/2012, NKBBN/510-403/2014, NKBBN/278/2016.

Statistical analysis. Qualitative data was summarized by frequency (percentage). Statistical analysis was performed using the R statistical package (version 3.2.3).

RESULTS

Overall, 337 second-grade lower secondary school students were invited to participate in the SOPKARD-Junior program implemented in 2013–2014, of which 282 (83.7%; 133 girls and 149 boys) students' parents have given their written consent to their child's participation in the program. The mean age of adolescents was 14 years and 5 months (SD=0.6; range: 13 years and 4 months to 15 years and 4 months).
Table 2 presents the percentage of the examined adolescents included in Group 1 – normal values for age, Group 2 – borderline test results representing a high risk of a disease or disorder, and Group 3 – abnormal test results indicating a given disease. The highest percentage of adolescents included in Group 3 was observed in dental examinations (49.2%), followed by orthopedic (26.3%), lipid profile (21.2%) and anthropometric assessments (12.3%). Detailed results of orthopedic examination are presented in Annex: Table S1 and S2. The highest number of adolescents with disorders that allowed them to be included in Group 2 was found in the lipid profile assessment (38.6%), orthopedic assessment (30.3%) and in psychological and psychiatric assessment (25.7%) (Table 2). It is worth noting that almost 10% of adolescents had abnormal results in echocardiography with electrocardiography (Group 3). In one patient cardiac arrythmia (supraventricular extrasystoles) was detected during examination. Diseases detected in the echocardiographic examination are presented in the Annex: Table S1 and S2.

The first step of blood glucose assessment showed elevated glucose values in 2.7% of adolescents; however, in the second step the percentage of abnormal results was 0.0%. One child was qualified to Group 3, despite the lack of fasting blood glucose readings, because the parents reported in an interview that the child suffers from diabetes (Table 2).

In addition, 71.7% of adolescents showed at least one border test result (group 2), and 75.7% of the subjects had at least one abnormal test result (group 3). Throughout the study, 315 incorrect test results were found, of which 14 (4.4%) were reported in interviews with parents.

This paper does not present the results of these biochemical tests, for which the percentage of adolescents with abnormal values did not exceed 1%. This includes: serum C-reactive protein, potassium and sodium levels, peripheral blood cell count, urinalysis and urinary potassium and sodium levels.
Table 2. Percentages of adolescents with normal, borderline and abnormal results of anthropometric, blood pressure, echocardiographic, dental, lipid profile, thyroid-stimulating hormone (TSH), blood glucose and urinary albumin-to-creatinine ratio (UACR) assessments.

A total of 257 adolescents (91.1%) were included in a comprehensive health status analysis in which at least 5 groups of assessments were performed (Figure 1). Only 5.1% of children obtained a score of 100 points, which means that the results were within the age norm. The remaining 94.9% of youth received less than 100 points. By eliminating from the analysis the medical examination in which the largest group of respondents was assigned to Groups 2 or 3 (dental check-up, 68% of teenagers) we see that in 12.2% of teenagers all test results are within the age norm.

DISCUSSION

The results obtained in this study indicate a high prevalence of various health disorders and support the need to develop and implement an effective comprehensive screening model for adolescents. This will enable detection of disorders and early stages of diseases, and thus the implementation of appropriate education, prevention, diagnosis and therapy. Such activities will allow to stop the incidence of many diseases in the future.

Almost 24% of adolescents examined in our study were found to be overweight or obese. The problem of overweight and obesity in adolescents has become one of the main challenges for public health all over the world and is considered one of the most worrying health phenomena. In many countries, the incidence of obesity is epidemic, also in adolescents and adolescents [13]. In 2013, overweight and obesity affected 14.2% of children aged 5–17.9 worldwide and it is expected that this proportion will increase to 15.8% in 2025 [14].
Importantly, global data are averaged and the scale of the problem differs significantly between countries – the percentages of overweight or obese children aged 5.0–17.9 years in Kiribati, Samoa, Micronesia and Tonga in 2013 were as high as 56.9%, 46.1%, 45.6%, and 43.6%, respectively [14]. According to data from the National Health and Nutrition Examination Survey performed in 2011–2012, overweight affects 34.2% of girls and 35.3% of boys aged 12–19, and obesity 30.6% of teenagers in the United States [15]. An international report from the 2013/2014 survey in 15-year-old adolescents shows the highest prevalence of overweight and obesity in teenagers in Malta (26% of girls, 34% of boys), Greenland (29% of girls, 28% of boys) and Canada (21% of girls, 34% of boys). On the other hand, the lowest rates of overweight and obesity among teenagers were observed in Albania (5% of girls, 15% of boys), Armenia (6% of girls, 15% of boys) and Ukraine (6% of girls, 15% of boys). In this study, the problem of overweight and obesity concerned 7% of Polish girls and 22% of Polish boys, which is below the global average which was 13% for girls and 22% for boys [16]. From the latest report from the HBSC study edited by Mazur and Małkowska – Szkutnik, the problem of obesity and overweight concerns 8% of girls and 23.1% of boys [17]. These data indicate a growing problem of overweight and obesity for Polish youth in this age group. It should be emphasized, however, that the reference values in the studies presented in the discussion were different than in the own study. This comparison can be used for the preliminary estimation of the problem of obesity and overweight of Sopot youth in relation to the presented data. In our study, 24% of adolescents were found to be overweight or obese, which is a disturbing result and clearly indicates the need to carry out anthropometric assessments in prevention programs. It has also been shown that obesity in childhood not only increases the likelihood of obesity in adulthood, but is also closely related to the risk of developing cardiovascular diseases and diabetes [18, 19]. Moreover, Kasley et
al. [20] showed that in people who were obese in childhood health consequences may still be present despite the normalization of body weight.

In the present study, elevated blood pressure values were found in every 10th teenager. Hypertension in children and adolescents is one of the most important health issues. It is an asymptomatic disease that, if untreated, leads to serious complications. Uncontrolled hypertension has serious direct and distant consequences, such as heart disease, stroke, atherosclerotic lesions, kidney disease and blurred vision. In addition, the results of the NATPOL 2011 study clearly showed that the knowledge of Poles (aged 18-79) related to the criteria and complications of hypertension is insufficient [21]. According to the experts of the European Society of Hypertension (ESH) [22] measurement of blood pressure should be part of a routine medical examination in children aged 3 years and older and in selected risk groups of children under 3. According to different authors, in the whole group of children and adolescents up to 18 years of age the prevalence of hypertension is 2–5%, while in the group of teenagers it is higher and reaches 9–12% [23-26]. The results of our study confirm the high incidence of elevated blood pressure values, which is why it is important to emphasize the significance of blood pressure measurements during each visit to a healthcare provider, also as part of a panel of prophylactic tests, and further diagnostics to detect secondary causes of hypertension.

Echocardiographic and electrocardiographic assessment revealed cardiac problems in over 13% of teenagers included in our study. Echocardiography is the basic diagnostic method in cardiology characterized by a high sensitivity; however, it is rarely used as a screening test due to high costs and the limited availability of equipment and qualified echocardiographers. It has been shown that this diagnostic method allows detection of abnormalities at every stage of a child's life [27, 28]. The highest detectability of congenital defects is observed early in the child's life. Severe defects are diagnosed and treated early.
The detection rate of cardiac defects decreases with age. Some heart defects undergo spontaneous involution over time (e.g., PFO, patent ductus arteriosus (PDA), muscular ventricular septal defect [VSD]). However, some of the oligosymptomatic defects may be diagnosed by echocardiography in older children and even in adults (e.g., atrial septal defect, moderate mitral regurgitation.) Due to the increase in the number of children and adolescents engaged in intensive sports activities, screening for cardiovascular diseases are important to detect abnormalities that are contraindications to sports or increase the risk of sudden death of athletes [29].

In the present study, 3% of patients had mild abnormalities (Group 2) which might worsen over time. Four adolescents were diagnosed (Annex: Table S1) with main pulmonary artery dilatation, bicuspid aortic valve which predisposes to aortic valve stenosis or regurgitation, greater than physiological tricuspid regurgitation, and patent foramen ovale (PFO).

Thirteen adolescents (9.7%) qualified to Group 3 were diagnosed with a total of 14 abnormalities (Annex: Table S2). The most frequently reported pathological findings were moderate valve regurgitations mitral regurgitation (MI) in 8 patients and aortic valve insufficiency in 4 patients. In population-based studies, mitral valve regurgitation occurs in 1–2.5% of subjects [28-30]. Valvular insufficiency cases detected in our study were of low grade and without hemodynamic significance. However, this defect can worsen with time.

One child was diagnosed with ostium secundum atrial septal defect (ASDII). This heart defect is oligosymptomatic and often without any abnormal findings in physical examination, and therefore remains undiagnosed or is diagnosed late. Screening tests allow early detection and treatment of this defect. In one child cardiac arrhythmia was detected thanks to simultaneous ECG recording, which after the 12-lead ECG examination turned out to be supraventricular extrasystoles. The child was recommended further diagnostics and follow-up.
Screening echocardiography with electrocardiography, although expensive and difficult to implement, is important for improving the health of children and adolescents and allow the detection, monitoring and, in selected cases, treatment of risk factors for cardiovascular diseases at an early stage of the child's development. Therefore, if there are organizational and financial possibilities, it is beneficial to include the echocardiographic assessment in the panel of screening tests for children and adolescents. Echocardiography should be preceded by ECG, or ECG can be performed simultaneously with echocardiography, to detect arrhythmias.

The **dental assessment** showed a high prevalence of caries (Groups 2 and 3) (DMF>0) in teenagers in Sopot (68.0%). Tooth decay (dental caries) is a common disease. It is the main cause of the loss of teeth, next to periodontal disease. The consequences of this process are serious disorders of the stomatognathic system that have a key impact on overall health [5]. Data on the frequency of caries among 15-year-old adolescents in Poland from the research program implemented by the Ministry of Health: "Monitoring of oral health in the Polish population 2016–2020" indicate its very high prevalence that amount to 94.9 % in Mazowieckie Province, 94.5% in Dolnośląskie Province and 92.5% in Lubelskie Province [31].

According to a report by Mielnik-Błaszczyk, Krawczyk and Stachurski, the prevalence of tooth decay among 15-year-old adolescents in the Podkarpackie Province is equally high and amounts to 96.67% for Nisko and 100% for Rzeszów [32]. A study carried out in 2013 by the Health and Social Care Information Centre (NHS Digital) among 15-year-old students showed that percentages of adolescents with obvious decay experience were 44% in England and 63% in Wales [33]. The frequency of caries in our study was 68.0%, which is a good result compared to general Polish data. However, it should be emphasized that for many years Sopot adolescents have been provided with dental care and dental offices are located in schools. Therefore, it seems that the lower prevalence of caries in Sopot children compared to
other children in Poland may be caused by preventive and therapeutic activities by dental
offices at schools. The epidemiological situation clearly indicates the need to introduce dental
assessment into the basic panel of screening examinations.

Lipid metabolism disorders were found in almost 60% of the examined teenagers.
Lipid disorders are often asymptomatic and may remain undiagnosed for decades, but they are
one of the main risk factors for the occurrence of serious diseases such as heart attack, stroke,
and kidney disease [34, 35]. In many epidemiological studies, it has been shown that the
elevated cholesterol level in childhood also persists in adults and is associated with an
increased risk of cardiovascular disease [36, 37]. It has been shown that during puberty, LDL
cholesterol levels decrease by 15% on average and false-negative results may be obtained
when diagnosing lipid disorders [38, 39]; therefore, the age of 9–11 represents the best period
for lipid metabolism assessment [40, 41]. Our study, despite the pubertal age of subjects,
showed large deviations from the age-specific norm, which is why it all the more indicates a
major health problem among adolescents. These data clearly demonstrate that atherosclerosis
prevention in both high-risk and population-based strategies should be started in childhood –
ideally in accordance with the guidelines of the National Lipid Association Expert Panel on
Familial Hypercholesterolemia that recommend lipid profile assessment in all children aged
9–11 [40,41]. It seems that in children of this age lipid levels should be measured as part of
screening. The interpretation of test results in teenagers is difficult because there are no
standards for Polish children and adolescents. The reference values adopted in our study are
those recommended by the National Education Cholesterol Program (NCEP), which are very
general, gender independent and the same for children and adolescents. The results of a study
by Zdrojewski et al. showed that a significant percentage of young adult Poles aged 18–39
have abnormal values of TC, LDL cholesterol and TG (54.3%, 42.7%, 16.4%, respectively)
[42]. In addition, Niklas et al. showed a high prevalence of hypercholesterolemia and
hypertension among young adults in the Polish population (age group: 19-49; 15%) [43]. The high prevalence of lipid disorders in our study and the alarming epidemiological data for young adults indicate that lipid metabolism disorders are a serious health problem in Poland. It seems necessary to implement lipid profile assessment into the panel of screening test and develop reference values for Polish children and adolescents.

Abnormal TSH values were found in 10% of adolescents evaluated in our study. Analysis of TSH levels is challenging because there are no reference values developed specifically for Polish adolescents. What is more, there are no generally accepted reference values for children and adolescents in the world. In our analysis, we used reference values according to Kapelari in the form of centile charts [10]. The magnitude of the problem showed by our study and the current state of knowledge on TSH clearly indicates that TSH test should be implemented in screening programs. At the same time, it is necessary to develop reference values for Polish adolescents.

Two-step screening blood glucose assessment revealed no patient with elevated glycemic values. One child was qualified to Group 3 for blood glucose levels (Table 2), because the interview with parents revealed that their child was diagnosed with diabetes at the age of 10. It should be emphasized that in fasting blood glucose testing, it is crucial to verify this parameter in people whose results after the first determination are above the reference values. In our study, 2.7% of adolescents have elevated fasting blood glucose in the first step of blood glucose assessment; however, measurements performed after repeating the instructions regarding proper preparation for the test in this group of adolescents were normal. It should also be remembered that the most common form of diabetes in juvenile Caucasian patients is type 1 diabetes, which is characterized by numerous and very dynamic clinical symptoms. These arguments raise the question about the need for blood glucose measurement in screening panel for adolescents. Szczerbiński et al. suggests that physical activity may
serve as a protective factor against type 2 diabetes, so it is worth implementing such prevention methods in adolescents [44].

In the present study, almost 10% of adolescents had elevated UACR. Albuminuria is a recognized indicator of not only kidney damage but also vascular endothelium dysfunction in patients with hypertension, diabetes and/or cardiovascular diseases [45-47]. Albuminuria was used for early detection of chronic kidney disease in an adult population and was found to occur at a surprisingly high rate. In the PolNef study, albuminuria was detected in 11.9% of the studied population [48]. Our previous study in the adolescent population showed that more than 11% had elevated UACR [49]. In the present study, 9.3% of adolescents had UACR > 30mg/g. This confirms the surprisingly high incidence of albuminuria at such a young age. However, the lack of albuminuria cannot be the basis to exclude nephropathy. Adolescents with albuminuria should be followed-up to monitor kidney function. The high prevalence of elevated UACR indicates the need to include this parameter into the screening panel.

Results of the orthopedic assessment showed that 30% of adolescents require prophylaxis to prevent postural defects, and 26% require further diagnostics and potential treatment. A child's poor posture, and especially planovalgus foot, is one of the frequent reasons for the parents’ anxiety and, consequently, visits to pediatricians and orthopedists. Until today, no uniform management standard has been adopted; and this applies to diagnostic methods, classification, prevention and treatment. Only physical examination can be used for screening purposes. Footprint analysis is also not entirely reliable, depending on the technique used, while at the same time this examination significantly extends the time and increases the cost of the entire orthopedic assessment [50].

Currently, the vast majority of researchers focus on the functional aspect, i.e., the dynamics of the lower limb as the main factor responsible for potential pathology [51]. Hence, in our
study, particular emphasis was put on assessing the dynamics of the musculoskeletal system. This approach was aimed at distinguishing a symptomatic planovalgus foot – uncorrectable, painful or conflicting with footwear – as the only pathology requiring intervention, leading to the development of biomechanical disorders of the musculoskeletal system, especially the lower limb and the spine [51-53]. There is a significant discrepancy in the world literature regarding the prevalence of flat feet in adolescents aged 14 years. In studies conducted in Africa and the Middle East the prevalence rate was 12–13%, while in European studies it was 46–50% [50, 53]. At the same time, in all studies, the rates of symptomatic flat foot (if such a category was created) did not exceed several percent [50, 52]. The above discrepancy may indicate both the lack of objective research methods and differences between studied populations in terms of race, weight or lifestyle.

Considering the fact that the vast majority of research centers around the world report the self-improvement of the valgus deformity of feet up to the age of 10, it seems reasonable to carry out such screening tests in younger children – between 10 and 12 years of age.

The psychological and psychiatric assessment revealed depressive symptoms in 25.6% of examined population, and 4.1% of adolescents were diagnosed with clinical depression. Depression is one of the most serious health and social problems in the world. It is quite rare disorder in pre-pubertal children, but with the onset of adolescence its frequency remarkably increases and remains at a high level afterwards. The prevalence of clinical depression in young children is 1–2% and in the first phase of adolescence it increases and reaches 3–8%, whereas the prevalence in the whole period from childhood to the end of adolescence is 20% [54-56]. In a recent study of Polish 15-year-olds, depressive symptoms occurred in 27.4% of girls and 19.2% of boys [57]. A similar, although slightly higher, result was obtained in the SOPKARD-Junior survey – the prevalence of depressive symptoms in students of lower secondary schools in Sopot was 29.7%. In the SOPKARD-Junior program,
apart from the assessment of the severity of depressive symptoms, psychiatric verification of the diagnosis was carried out based on medical criteria. The prevalence of depression among Sopot teenagers (4.1%) does not differ significantly from the prevalence of this disorder in other parts of the world, although the rates of depression in American teenagers are even higher [58, 59]. What is striking in the results of the SOPKARD-Junior program is a high percentage of adolescents at risk (‘risk group’) – every third teenager has depressive symptoms. These adolescents may develop clinical disorders in the future that require treatment; therefore, early education and prevention addressed to this group of young people would be of particular importance. One in 20 14-year-old children has clinical depression, which suggests that in every lower secondary school class there may be a child with depression who requires specialist treatment and help. This health situation clearly indicates the need to introduce a two-step psychological-psychiatric examination, i.e., questionnaire surveys to identify a group of adolescents with depressive symptoms (the first step) and meetings of this group of adolescents with a child psychiatrist in order to verify and possibly confirm the diagnosis of depression (the second step).

The additional goal of the study is to propose a panel of screening assessments based on the epidemiological situation of adolescent health in a selected urban population, which should be included in the prevention program. Obviously, determining the actual state of health through medical diagnosis is crucial to establishing an appropriate preventive approach, but it cannot be the only factor that influences the selection of tests to be performed as part of screening programs. The cost-effectiveness ratio, the availability of qualified staff, medical equipment and space are also important. In this study, a comprehensive health analysis based on a holistic assessment of teenagers’ health using a burden analysis showed that only 5.1% of subjects were scored 100 points. This means that in this group of
teenagers all medical examination results were within the age norm. The lower the score obtained in the analysis, the poorer adolescents health status; and the adolescents with lower score require more intensive preventive and therapeutic activities (Figure 1). A score of less than 100 points was obtained by as many as 94.9% of adolescents. This means that in this group of adolescents there is at least borderline or abnormal results. This group of almost 95% of adolescents requires education, prevention and treatment, as the progression of the detected disease and/or risk factors is associated with negative, often irreversible health consequences. As many as 71.7% of respondents were classified at least once into a group with a borderline result (Group 2). This means that these adolescents should be provided with regular diagnostics and education. Worrying is the fact that 75.7% of subjects were diagnosed with a disease/abnormal result (Group 3). Out of 315 diagnosed disease/abnormal result entities, only 14 (4.4%) were reported by parents in interviews, which means that parents' awareness of the health status of their adolescents is very poor.

This disturbing health situation of adolescents clearly indicates very high needs in the area of education, prevention and treatment in this group of adolescents. The prevalence of risk factors, borderline result and diseases/abnormal result found in the anthropometric, blood pressure, echocardiographic, electrocardiographic, dental, orthopedic, psychological-psychiatric, lipid profile, TSH and UACR assessments indicates that all these tests should be included in prevention programs dedicated to adolescents. The implementation of prevention of many disorders and diseases in adolescents is too late. It seems reasonable that this screening panel should be implemented in younger children in order to reduce the prevalence of risk factors and diseases in adolescence.

In order to plan interventions and issue recommendations on the range of screening tests included in the model preventive program for all Polish adolescents, it is necessary to perform a full range of assessments carried out in SOPKARD-Junior Program in different regions of
Poland. Our study certainly indicates that the needs are large and extensive educational, preventive and therapeutic activities should be implemented for this part of the population throughout Poland.

CONCLUSIONS

1. A large number of adolescents diagnosed with-borderline value, or abnormal result/disease and comprehensive health analysis clearly indicates high needs in the area of prevention and treatment in adolescents. Therefore, it is necessary to develop a model of comprehensive screening assessment.

2. The results obtained in our study indicate that anthropometric (BMI), arterial blood pressure, echocardiographic, electrocardiographic, dental, orthopedic, psychological-psychiatric, lipid profile, TSH and UACR assessments should be included in the standard screening panel for adolescents.

3. The large number of adolescents with lipid metabolism disorders (according to the US reference values) and abnormal TSH levels (according to the Austrian reference range) indicates that there is a need to develop reference values of these parameters for Polish adolescents and objectively verify these disorders.

Declarations:

Abbreviations

AI - aortic insufficiency
ASDII - ostium secundum atrial septal defect
BMI - body mass index
BP - blood pressure
D – decayed
DMF – Decayed Missing Filled
ECG - electrocardiographic
ECHO – echocardiographic
ESH - European Society of Hypertension
F - filled
HDL cholesterol – high density lipoprotein
LDL cholesterol – low-density lipoprotein
M - missing
MI - mitral insufficiency
MI - mitral regurgitation
MUG - Medical University of Gdansk
NCEP - National Education Cholesterol Program
NHS Digital - Health and Social Care Information Centre
NKEBN - Independent Bioethics Commission for Research
PDA - patent ductus arteriosus
PFO - patent foramen ovale
PI - pulmonary insufficiency
TC - total cholesterol
TG – triglycerides
TI – tricuspid insufficiency
TSH - thyroid stimulating hormone
Patient and public involvement

The only condition that had to be met for a child to be included in the program was obtaining the written consent of the child and his or her parent. After the study, each parent received an individual information card with their child's medical results.

Ethics approval and consent to participate

The program has been approved by the Independent Bioethics Committee of the Medical University of Gdansk and assigned the numbers NKEBN/510/2006, NKEBN/510-350/2007, NKEBN/510-364/2009, NKBBN/510-249/2012, NKBBN/510-403/2014, NKBBN/278/2016. The only condition that had to be met for a child to be included in the program was obtaining the written consent of the child and his or her parent.

Consent for publication

Not applicable

Availability of data and material

The datasets generated and/or analyzed during the current study are not publicly available due personal data of patients are protected but are available from the corresponding author on reasonable request.

Competing interests

Authors haven't any competing interests.
Funding

The SOPKARD-Junior program and preparing manuscript the article were financed from the funds of the City Hall in Sopot, the statutory funds of the Medical University of Gdansk, from the unrestricted educational grants from Servier Poland and from the Young Scientist program 01-0355/08/137 at the Medical University of Gdańsk.

Acknowledgements

The authors and the persons responsible for the execution of the SOPKARD-Junior program 2013–2014 would like to thank all the experts and others who have helped to prepare and oversee the project, particularly:

- Prof. Aida Kusiak of the Department of Periodontology and Oral Mucosa Diseases,
- Prof. Tomasz Mazurek of the Department of Trauma and Orthopedic Surgery,
- Ph. D. Piotr Popowski of the Department of Public Health and Social Medicine,
- Prof. Bolesław Rutkowski of the Department of Nephrology, Transplantation Medicine and Internal Diseases,
- Prof. Krzysztof Sworczak of the Department of Endocrinology and Internal Diseases,
- Prof. Bogdan Wyrzykowski of the Department of Hypertension and Diabetes,
- M. Sc. Adam Wyszomirski of the Department of Adult Neurology,
- Prof. Aleksandra Żurowska of the Department of Pediatrics, Nephrology and Hypertension,

all the above at the Medical University of Gdańsk, Poland,

and

- M. Sc. Iwona Plewako of the City Hall in Sopot,
- M. Sc. Alicja Utracka of the University Clinical Center, Gdańsk.

-school principals in which the SOPKARD-Junior program was carried out
References:

Table 1. Reference values for total cholesterol (TC), triglycerides (TG), HDL-cholesterol (HDL), thyroid-stimulating hormone (TSH), blood glucose and urinary albumin-to-creatinine ratio (UACR) used for classification into the following groups: Group 1 with normal values, Group 2 with borderline values, Group 3 with elevated values.

<table>
<thead>
<tr>
<th></th>
<th>Normal (acceptable) levels (Group 1)</th>
<th>Threshold (borderline) levels (Group 2)</th>
<th>High levels (Group 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC, mg/dL</td>
<td><170</td>
<td>170–199</td>
<td>≥200</td>
</tr>
<tr>
<td>TG, mg/dL</td>
<td><90</td>
<td>90–129</td>
<td>≥130</td>
</tr>
<tr>
<td>HDL, mg/dL</td>
<td>>45</td>
<td>35–45</td>
<td>≤35</td>
</tr>
<tr>
<td>TSH, mU/L</td>
<td>11–14 years of age 11–14 years of age</td>
<td>Not applicable</td>
<td>11–14 years of age 11–14 years of age</td>
</tr>
<tr>
<td></td>
<td><4.61; 15–18 years of age <4.61; 15–18 years of age</td>
<td>Not applicable</td>
<td>≥4.61; 15–18 years of age ≥4.61; 15–18 years of age</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>70–99</td>
<td>Not applicable</td>
<td>≥100</td>
</tr>
<tr>
<td>UACR, mg/g</td>
<td><30</td>
<td>Not applicable</td>
<td>≥30</td>
</tr>
</tbody>
</table>

Abbreviations: TC, total cholesterol; TG, triglycerides; HDL, high-density cholesterol; TSH, thyroid-stimulating hormone; UACR, urinary albumin-to-creatinine ratio.
Table 2. Percentages of children with normal, borderline and abnormal results of anthropometric, blood pressure, echocardiographic, dental, lipid profile, thyroid-stimulating hormone (TSH), blood glucose and urinary albumin-to-creatinine ratio (UACR), orthopaedic and psychologic-psychiatric assessments.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Group 1 [% (N)]</th>
<th>Group 2 [% (N)]</th>
<th>Group 3 [% (N)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropometric examination – BMI</td>
<td>71.3 (191)</td>
<td>16.4 (44); (including: overweight 14.2 (38); underweight 2.2 (6))</td>
<td>12.3 (33); (including: obesity 9.7 (26); malnutrition 2.6 (7))</td>
</tr>
<tr>
<td>Blood pressure assessment</td>
<td>89.5 (240)</td>
<td>7.1 (19)</td>
<td>3.4 (9)</td>
</tr>
<tr>
<td>Echocardiographic and electrocardiographic assessment</td>
<td>87.2 (116)</td>
<td>3.0 (4)</td>
<td>9.8 (13)</td>
</tr>
<tr>
<td>Dental check-up</td>
<td>32.0 (85)</td>
<td>18.8 (50)</td>
<td>49.2 (131)</td>
</tr>
<tr>
<td>Lipid profile</td>
<td>40.2 (97)</td>
<td>38.6 (93)</td>
<td>21.2 (51)</td>
</tr>
<tr>
<td>TSH</td>
<td>90.0 (197)</td>
<td>Not applicable</td>
<td>10.0 (22)</td>
</tr>
<tr>
<td>Glucose (after the second step)</td>
<td>99.1 (107)</td>
<td>Not applicable</td>
<td>0.9 (1)</td>
</tr>
<tr>
<td>UACR</td>
<td>90.7(176)</td>
<td>Not applicable</td>
<td>9.3 (18)</td>
</tr>
<tr>
<td>Orthopaedic assessment</td>
<td>43.4 (43)</td>
<td>30.3 (30)</td>
<td>26.3 (26)</td>
</tr>
<tr>
<td>Psychological and psychiatric assessment (after the second stage)*</td>
<td>70.2 (186)</td>
<td>25.7 (68)</td>
<td>4.1 (11)</td>
</tr>
</tbody>
</table>

*Out of 79 children qualified for the second step of psychological and psychiatric examinations, 73 children attended the second-step assessment (92.4%).

Abbreviations: BMI, body mass index; TSH, thyroid-stimulating hormone; UACR, urinary albumin-to-creatinine ratio.
Figure 1. Comprehensive analysis of the health status of adolescents. Percentage (%) of children with the score.