Clinical characteristics and short-term outcomes of patients with coronavirus disease 2019: a retrospective single-center experience of a designated hospital in Poland

Błażej Nowak1, Piotr Szymański2,3, Igor Pańkowski4, Agnieszka Szarowska5, Katarzyna Życińska6, Wojciech Rogowski7, Robert Gil2,3, Mariusz Furmanek8, Jacek Tatur3, Artur Zaczyński1, Zbigniew Król10,11*, Waldemar Wierzba3,11*

1 Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
2 Center for Postgraduate Medical Education, Warsaw, Poland
3 Clinical Department of Interventional Cardiology, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
4 Emergency Department, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
5 Clinical Department of Internal Diseases and Hepatology, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
6 Clinical Department of Internal Diseases and Rheumatology, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
7 Clinical Department of Urology and Urological Oncology, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
8 Diagnostic Radiology Department, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
9 Medical University of Warsaw, Warsaw, Poland
10 Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, Warsaw, Poland
11 Satellite Campus in Warsaw, University of Humanities and Economics in Lodz, Warsaw, Poland

Correspondence to:
Prof. Piotr Szymański, MD, FESC, Centre of Postgraduate Medical Education, Clinical Department of Interventional Cardiology, Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, ul. Wołoska 137, 02-507 Warszawa, Poland, phone: +48/225081100, email: pzymanski@ptkarhio.pl

Received: April 26, 2020.
Revision accepted: May 13, 2020
Published online: May 18, 2020.
Pol Arch Intern Med. 2020;130 (5): 407-411
doi:10.20452/pamw.15361
Copyright by the Author(s), 2020

* BN and WW contributed equally to this work.

KEY WORDS
clinical characteristic, coronavirus disease 2019, severe acute respiratory syndrome coronavirus 2

ABSTRACT
INTRODUCTION Since the first reported case of coronavirus disease 2019 (COVID-19) in Poland, the worldwide pandemic has spread throughout the country, leading to many hospital admissions. There has been an urgent need to determine clinical characteristics of Polish patients with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the clinical setting.

OBJECTIVES The aim of this retrospective study was to outline characteristics and short-term outcomes of SARS-CoV-2-positive patients.

PATIENTS AND METHODS We retrospectively assessed 169 consecutive patients with laboratory-confirmed COVID-19 with regard to their clinical manifestations, radiological findings, treatment, complications, and outcomes.

RESULTS Of the 169 patients, more than half was aged 65 years or older (88; 52.1%), 51.5% were male, and 78.3% had comorbidities. The majority of patients (106; 62.7%) were transferred from outbreak locations in medical facilities. The most common symptoms on admission were fever (42%), shortness of breath (35%), and fatigue (33%). Twenty seven (15.4%) patients required intensive care unit admission. Overall mortality was 26.3% (n = 46) and was significantly higher in patients transferred from other facilities (38 out of 106; 35.8%), than in patients admitted directly to the hospital (8 out of 63; 12.69%; P <0.001). Seventeen out of 29 patients admitted to the intensive care unit died (mortality, 58.6%), including 30 out of 41 patients with acute respiratory distress syndrome (73.2% mortality rate).

CONCLUSIONS Polish patients with COVID-19 have similar characteristics and risk factors for adverse outcomes to those observed in countries in which outbreaks occurred earlier. Significantly higher mortality in patients transferred from other centers warrants special attention and transfer policy should be verified.
WHAT’S NEW?

This is the first report of clinical characteristics and short-term outcomes of 169 hospitalized patients with new coronavirus disease 2019 (COVID-19) coming from a designated hospital in Warsaw, Poland. We describe epidemiology, symptoms, and radiological characteristics of hospitalized patients with COVID-19, focusing on the clinical course and outcomes. Our data confirm that the most exposed populations are the elderly and patients with comorbidities. Polish patients with COVID-19 have similar characteristics and risk factors for adverse outcomes to patients from countries with earlier outbreak. Both public health policy actions and hospital management should focus on these particularly vulnerable patients.

INTRODUCTION Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the first outbreak in humans in the city of Wuhan, China in December, 2019, as a result of a probable zoonotic transfer from bats.1 Since the first reported case of COVID-19 in Poland on March 4, 2020, there have been 6674 diagnosed and 232 fatal cases of COVID-19 nationwide (as of April 12, 2020).2

Initially, ordinances of the Polish Minister of Health introduced a state of epidemiological threat, followed by a state of COVID-19 epidemic on March, 20, 2020. The tertiary multispecialty hospital in which the study took place was commissioned a designated infectious diseases center as a part of the general healthcare system reorganization program in response to the pandemic threat.

Our institution is located in the capital of Poland and is admitting solely patients with COVID-19 who are frequently referred from various outbreak locations in medical facilities. Presented data provide information on clinical characteristics, treatment, and short-term outcomes of patients with COVID-19.

PATIENTS AND METHODS This retrospective study was performed at the Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw, which was transformed into a designated referral COVID-19 unit. According to the World Health Organization guidance, a confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction assay of nasal or pharyngeal swab specimens.3

Patients were admitted either directly from the emergency department, outpatient clinics, or external hospitals (so-called transferred patients). Reasons for admission were moderate or severe COVID-19 or SARS-CoV-2-positive patients with other severe concomitant acute or chronic diseases.

The period of hospitalization and status as of the day of discharge were analyzed. Electronic records from the Hospital Information System of consecutive patients with COVID-19 were used and checked by 2 independent researchers.

Electronic records from the Hospital Information System of consecutive patients with COVID-19 hospitalized between March 16, 2020 and April 7, 2020 were analyzed by 2 independent researchers. Demographic, epidemiologic, clinical, imaging studies, treatment, complications, and outcomes, including admissions to an intensive care unit (ICU), the use of mechanical ventilation, and death, were analyzed. The study was retrospective in nature and therefore patient consent was deemed not necessary. The study was approved by the ethics committee of the Central Clinical Hospital of the Internal Affairs and Administration Ministry (S8/2020).

RESULTS Demographic, clinical, and radiological characteristics

Demographic, clinical, and radiological characteristics are shown in Table 1. The number of men and women were comparable, with a slight predominance of male sex (51.5% vs 48.5%, respectively). More than half of admitted patients were 65 years old or older (88; 52.1%). A total of 106 patients (61%) were transferred from external hospitals, long-term care facilities, and dialysis facilities. Only 5 patients (3%) were healthcare workers. The most common symptoms at onset were fever (42%), shortness of breath (35%), fatigue (33%), cough (32%), followed by single cases of headache, nausea, vomiting, and diarrhea. Anosmia and ageusia were observed in 3 (1.7%) patients. At admission, mean blood oxygen saturation was 96%. The majority of patients (137 out of 169; 78.3%) had at least 1 comorbidity, the most common being hypertension (45.7%) followed by peripheral and cerebrovascular disease (33.1%), coronary heart disease (29.7%), malignancy, and chronic renal disease.
As of April 7, 2020, 80 patients (45.7%) were still hospitalized and 46 (26.3%) were discharged home or to isolation areas. Mean (SD) hospitalization time was 5.3 (3.5) days for discharged patients. Admission to the ICU was required in 27 (15.4%) patients, and mechanical ventilation was necessary in 26 (14.9%) patients (Table 2).

Figure 1 illustrates the demographic structure and age-related deaths. Overall mortality was 26.3% (46) and was significantly higher in patients transferred from other facilities (38 out of 106; 35.8%) than in patients admitted directly to the hospital (8 out of 63; 12.69%; \(P < 0.001 \)). Seventeen out of 29 patients admitted to the ICU died (58.6%) including 30 out of 41 patients with severe pneumonia (73.2% mortality).

Discussion Over the past 2 decades, epidemics of 2 betacoronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have caused more than 10 000 cumulative cases with mortality rates of 10% for SARS-CoV and 37% for MERS-CoV. However,
TABLE 2 Complications, ventilation, and outcomes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All (n = 169)</th>
<th>Survivors (n = 123)</th>
<th>Nonsurvivors (n = 46)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonia</td>
<td>87 (51.5)</td>
<td>49 (39.8)</td>
<td>38 (82.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>ARDS</td>
<td>41 (24.3)</td>
<td>11 (8.9)</td>
<td>30 (65.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>AKI</td>
<td>17 (10.1)</td>
<td>7 (5.7)</td>
<td>10 (21.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>DIC</td>
<td>4 (2.4)</td>
<td>2 (1.6)</td>
<td>2 (4.3)</td>
<td>0.31</td>
</tr>
<tr>
<td>Septic shock</td>
<td>17 (10.1)</td>
<td>6 (4.9)</td>
<td>11 (23.9)</td>
<td>0.001</td>
</tr>
<tr>
<td>Oxygen</td>
<td>94 (55.6)</td>
<td>58 (47.2)</td>
<td>36 (78.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Ventilator</td>
<td>26 (15.4)</td>
<td>11 (8.9)</td>
<td>15 (32.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>NIV</td>
<td>1 (0.6)</td>
<td>1 (0.8)</td>
<td>0</td>
<td>Not performed</td>
</tr>
<tr>
<td>ECMO</td>
<td>1 (0.6)</td>
<td>0</td>
<td>1 (2.2)</td>
<td>Not performed</td>
</tr>
<tr>
<td>CRRT</td>
<td>1 (0.6)</td>
<td>0</td>
<td>1 (2.2)</td>
<td>Not performed</td>
</tr>
<tr>
<td>ICU</td>
<td>27 (16)</td>
<td>11 (8.9)</td>
<td>16 (34.8)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Data are presented as number (percentage) of patients unless otherwise indicated.

Survivors vs nonsurvivors (t test or χ² test, as appropriate)

Abbreviations: AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; CRRT, continuous renal replacement therapy; DIC, disseminated intravascular coagulation; ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit; NIV, noninvasive ventilation

over the past 4 months, a novel coronavirus named SARS-CoV-2 led to over 100 000 deaths and nearly 2 000 000 people infected all over the world. The first European cases were reported in France on January 24, 2020. In Poland, the first laboratory-confirmed case was announced on March 4, 2020. On April 12, 2020, in Poland, there were 6674 laboratory-confirmed cases with 232 fatal cases. Clinical manifestations of COVID-19 in symptomatic patients were similar to the ones reported in large cohorts from China. A large proportion of asymptomatic patients (26.6%) is explained by the nature of our center designated to treat both severe COVID-19 cases and patients infected with SARS-CoV-2 with mild or no COVID-19 symptoms but severe concomitant conditions requiring hospitalization.

Based on the Hospital Therapeutic Committee recommendations, a high proportion of patients (70.3%) received chloroquine as part of the compassionate use program. These guidelines were based on the initial Chinese and Italian experience.

In our study, 55.6% of patients required oxygen therapy, 16% were admitted to the ICU, and 15.4% required mechanical ventilation. Number of ventilated patients was not limited by the number of ventilators at our institution. Most Chinese studies report mechanical ventilation in less than 10% of patients. For example, Guan et al reported mechanical ventilation in 2.3%, and Huang et al, in 5% of patients. In a recent report from New York City, however, 33.1% of patients required mechanical ventilation. These differences were explained by the authors by the illness severity and early-intubation strategy in New York. Our results indicate an intermediate severity and more conservative intubation strategy. The latter is in concordance with the recent comments on the potential harms of the very aggressive intubation strategy.

A recent systematic review and meta-analysis conducted by Rodriguez-Morales et al estimated mortality for hospitalized patients at 13%. Overall mortality in our study was unusually high (27.2%); however, this difference could be explained by the number of patients transferred from other centers, frequently in very severe condition or with multimorbidity (35.8%). For emergency department admissions, mortality was similar to the one observed by Rodriguez-Morales et al (12.69%).

Overall, our cohort was older, with mean (SD) age of 63.7 (19.6) years, and had more comorbidities (78.3%) than cohorts described by the Chinese centers. For example, in a retrospective review by Guo et al, 1099 hospitalized patients had mean (IQR) age of 47 (35–58) years, and only 23.7% had coexisting diseases. This explains low in-hospital case fatality ratio of 1.4%. In another Chinese study of 102 hospitalized patients mortality was 16.7% in patients whose median (IQR) age was 54 (37–67) years and with 46.1% comorbidity ratio. In general, mean age of patients with COVID-19 and comorbidities are higher in the European and American populations as compared with Chinese patients.

Central Clinical Hospital of the Ministry of the Interior and Administration in Warsaw serves as a Polish reference center admitting patients with the most severe COVID-19. Higher in-hospital mortality in transferred patients should be analyzed taking into consideration very specific role of designated hospitals in the Polish healthcare system during the pandemic. Transferred patients represented a highly preselected population as usually those severely / critically ill were relocated to our hospital from their primary hospital locations where infection outbreaks occurred.

Therefore, epidemiological and clinical characteristics as well as outcomes are not representative for the general population of hospitalized patients with COVID-19.

This study has several limitations. First, this is a retrospective study, and most of the data were obtained from the electronic patients history. Importantly, we are still in the initial / middle phase of the pandemic; patients are still hospitalized, so data are not generalizable. Importantly, given the specific nature of the designated hospital, substantial proportion of patients with SARS-CoV-2 were hospitalized due to severe concomitant diseases rather than for COVID-19 itself. Therefore, some deaths were not classified as SARS-CoV-2-related deaths. Their detailed analysis will be presented elsewhere.

Conclusions Polish patients with COVID-19 have similar characteristics and risk factors for adverse...
outcomes to those observed in countries where outbreaks occurred earlier. Data from our center differ from general characteristics of hospitalized patients with COVID-19 due to the specific role of the designated hospital and a large number of transferred patients. Nevertheless, a significantly higher mortality in patients transferred from other centers warrants special attention. Transfer policy should be verified with possible earlier admission to the reference center, before deterioration occurs.

ARTICLE INFORMATION

CONTRIBUTION STATEMENT  WW, PS, BN, AZ, and ZK conceived the study and contributed to the research design. BN and JT acqurid data. PSZ and BN drafted the manuscript. All authors analyzed and interpreted the data. All authors revised and approved the final version of the manuscript.

CONFLICT OF INTEREST  None declared.

OPEN ACCESS  This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and distribute the material in any medium or format and to remix, transform, and

REFERENCES