Telemedicine in cardiology in the time of coronavirus disease 2019: a friend that everybody needs

George Koulaouzidis, Dafni Charisopoulou, Wojciech Wojakowski, Anastasios Koulaouzidis, Wojciech Marlicz, Tomasz Jadczyk

From January 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing coronavirus disease 2019 (COVID-19), has rapidly spread from China around the world. With more than 6.4 million infections worldwide, COVID-19 remains a serious global public health concern. Extensive measures to reduce person-to-person transmission of the disease have been undertaken to control the current outbreak. In several countries, the quarantine has been one of those measures, including home isolation and avoiding social contacts with other people in the neighborhood, supermarkets, or public transport.

In fact, a great proportion of the world population is currently in some kind of isolation. Therefore, the COVID-19 pandemic has abruptly disorganized healthcare across the world, forcing systems to divert both human and economic resources to overcome the COVID-19 crisis. Nonemergency procedures and follow-up consultations with family physicians, cardiologists, and other healthcare and/or medical professionals have been postponed and/or cancelled. This decision was taken to free up hospital beds for patients with COVID-19. Furthermore, a proportion of medical professionals have been reallocated in order to support the care of these patients. Lastly, healthcare professionals are at high risk of infection—this is something that can prove detrimental in combating this pandemic.

The generic terms “telemonitoring” or “telehealth” cover a wide range of activities aimed at delivering care at a distance, without direct physical contact with an individual or a patient. Telemonitoring (TM) was credited with the potential to improve medical care, quality of life, and prognosis of chronically ill patients. Home TM involves the use of electronic devices and telecommunication technologies for digital transmission of physiological and other disease-related data from the patient’s home to a healthcare center, thus assisting in disease management. Telemonitoring can be used synchronously (telephone and video) and asynchronously through email communication, artificial intelligence (AI) agents (text and voice chatbots), and wearable devices, while medical data are gathered on patient portals. Furthermore, a synergistic hybrid virtual care approach provides strong support in population-wide triaging and patient-centered care (Figure 1). However, despite the available data and the growing interest in TM among cardiologists, its use has not been widely adopted. This is mainly due to lack of a multidisciplinary approach to the patient, which is in line with the modern concept of personalized medicine, and lack of financial support. Advances in data collection and transfer (Bluetooth, broadband, and Wi-Fi) allow for the regular, reliable, and accurate communication of vital signs and symptoms from community-based patients.

As even a 6-minute hall walk test can be performed with the use of a smartphone application, a variety of novel technologies can be employed to support patient monitoring during a public health emergency, for example: clinical electronic thermometers, heart rate monitors, electrocardiographs (ECGs), cardiac monitors, over-the-counter electrocardiogram software, pulse oximetry (SpO_2), noninvasive blood pressure monitors, respiratory rate or breathing frequency monitors, and electronic stethoscopes. Adoption of TM services gives the opportunity to maintain continuity of medical care while reducing the potential for community spread of the virus. The main purpose is to deliver care at a distance, without direct physical contact with the patient, offering in-person clinic visits only to those who have urgent (yet not emergency-level) clinical concerns requiring a detailed physical examination. Recent evidence has shown that
The CardioCube voice AI medical chatbot deploying Amazon Echo was clinically validated at Cedars-Sinai Medical Center (Los Angeles, California, United States) and implemented in routine clinical practice, helping telenurses to manage patients with HF (https://fcncare.com/). Using voice interface, users answer a set of pre-specified clinical questions. Collected verbal information is automatically converted from audio to text using a speech-to-text cloud service, whereas actionable data are gathered in patients’ electronic health records in hospital or clinic databases. To optimize the workflow, a clinical decision support system integrates electronic health records, automatically screens responses and red-flags values exceeding predefined thresholds and notifies healthcare providers accordingly. Long-term home monitoring with CardioCube supports early detection of HF decompensation prompting an adequate medical decision (https://fcncare.com/). As exemplified, voice AI technology can multiply medical workforce and help to deliver remote care providing safety for healthcare professionals and patients.

Exercise training is a cornerstone in the prevention and treatment of cardiovascular disease. Exercise-based cardiac rehabilitation (exCR) is commonly delivered in hospitals and should include an individualized program. However, even before the COVID-19 pandemic, referral rates and uptake of exCR were low, and participation was often limited by program availability, transport restrictions, inconvenient scheduling, and domestic or occupational responsibilities. These barriers suggest that accessibility is the primary factor limiting utilization of traditional center-based exCR programs. It has been already proven that TM exCR is at least as effective as center-based exCR in reducing modifiable cardiovascular risk factors. Therefore, tele-based exCR programs were developed to expand access to care.

Disruptions in heart failure (HF) care are among the consequences of the COVID-19 pandemic. During this time, the physical separation of patients from their medical teams may lead to lack of motivation and poor compliance. Changes in dietary and lifestyle behaviors during social isolation, such as increased food and alcohol consumption and decreased physical activity, may trigger HF decompensation. In these patient group, TM services are of great value, as it has been already well established that TM is associated with a better prognosis and reduced risk of hospitalization.

The cut-edge development in the field of AI and natural language understanding brought voice assistants into the market, which enable verbal communication between patients and voice-driven chatbots. Clinical-grade medical software deployed on widely used smartphones and smart speakers (ie, Amazon Echo and Google Home) provides a scalable framework for acute care triage and chronic disease management. Recently, Mayo Clinic (Rochester, Minnesota, United States) has implemented an Amazon Alexa-based tool incorporating COVID-19 guidelines from the Centers for Disease Control and Prevention, United States (https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-introduces-skill-for-amazons-alexa-about-covid-19/). The voice chatbot-driven symptom checker streamlines repetitive operational tasks associated with answering coronavirus-related questions and provides first-line screening. Moreover, voice-enabled technology has been applied to support the complex medical workflow.
Telemedicine and COVID-19

Marlicz, Tomasz J, Jadczyk (GK: Department of Cardiology, Stepping Hill Medical Center, Stockport, United Kingdom; DC: Division of Paediatric Cardiology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands; WW: Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland; AR: Endoscopy Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; WM: Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland; TJ: Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland; Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic)

CORRESPONDENCE TO Wojciech Marlicz, MD, PhD, DSc, FacC, Department of Gastroenterology, Pomeranian Medical University, ul. Uni Łabelskiej 1, 71-252 Szczecin, Poland, phone: +48 91 425 3211, email: marlicz@ hotmail.com

CONFlict OF INTEREST WW is a shareholder of CardioCube Corp., Seattle, Washington, United States. TJ is a cofounder and chief science officer of CardioCube Corp., Seattle, Washington, United States. Other authors declare no conflict of interest.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at pamw@mp.pl.

REFERENCES

5. Świear M, Dyrhus K, Sakodźiński J, et al. Telehealth visits in a tertiary cardiac rehabilitation centre as a response of the healthcare system to the pandemic of SARS-CoV-2 in Poland. Pol Arch Intern Med. 2020 May 19. [Epub ahead of print].

ARTICLE INFORMATION

AUTHOR NAMES AND AFFILIATIONS George Koulaouzidis, Dafni Charisopoulou, Wojciech Wójakowski, Anastasios Koulaouzidis, Wojciech Marlicz, Tomasz Jadczyk (GK: Department of Cardiology, Stepping Hill Hospital, Stockport NHS Trust, Stockport, United Kingdom; DC: Division of Paediatric Cardiology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands; WW: Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland; AR: Endoscopy Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; WM: Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland; TJ: Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland; Interventional Cardiac Electrophysiology Group, International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic).

LETTER TO THE EDITOR Telemedicine and COVID-19