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of them had type 2 diabetes mellitus (T2DM).1,2 
Diabetes contributes to endothelial dysfunction, 
increased endothelial permeability, atheroscle‑
rosis, as well as disturbance of the epicardial 

Introduction  Diabetes mellitus is an impor‑
tant and rapidly increasing worldwide problem. 
In 2013, there were approximately 382 million 
of people with diabetes mellitus and 90% to 95% 
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Abstract

Introduction  Diabetes mellitus is an  important and rapidly increasing problem in public health. It 
is associated with endothelial dysfunction and increased endothelial permeability, which may lead to 
severe cardiovascular events.
Objectives  We aimed to evaluate the relationship between polymorphisms of the cytochrome b‑245 
alpha chain (CYBA) gene encoding p22phox, a key subunit of nicotinamide adenine dinucleotide phos‑
phate oxidase, and endothelial function, atherosclerosis, and systemic oxidative stress in type 2 diabetes 
mellitus (T2DM).
Patients and methods  Intima‑media thickness as well as flow- and nitroglycerin‑mediated dilatation 
were measured in 182 patients with T2DM. Assessment of plasma levels of von Willebrand factor and 
malondialdehyde as well as genotyping of the coding sequence C242T (rs4673) and promoter region 
A‑930G (rs9932581) polymorphisms of CYBA were performed using standardized protocols.
Results  We observed a significant association of the impaired endothelial function, as measured by 
flow-mediated dilatation, with the C allele of the C242T polymorphism, but not with the A‑930G polymor‑
phism. Functional relationship of the C242T polymorphism with endothelial dysfunction remained signifi‑
cant following a multivariable adjustment for major risk factors for atherosclerosis. Mean intima‑media 
thickness, nitroglycerin‑mediated dilatation, and concentrations of malondialdehyde or von Willebrand 
factor were not related to the specific genotypes of the investigated polymorphisms.
Conclusions  The C242T polymorphism of the CYBA gene significantly affects endothelial function 
in T2DM, whereas the A‑930G polymorphism does not. Thus, the former might be a useful marker of 
endothelial dysfunction in patients with T2DM.
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gene, and clinically assessed endothelial func‑
tion and atherosclerosis progression, as well as 
biochemical parameters related to endothelial 
function and systemic oxidative stress in patients 
with T2DM.

Patients and methods S tudy participants and 
definitions  A total of 182 White patients diag‑
nosed with T2DM (see Table 1 for detailed clinical 
characteristics and medications used in the study 
cohort) were consecutively enrolled and followed 
up at the Department of Metabolic Diseases of 
the University Hospital in Kraków, Poland. De‑
tailed medical history and physical examination 
of all patients were described previously.22,23 In 
particular, 71, 30, and 62 patients presented mi‑
croangiopathic complications related to diabetic 
retinopathy, nephropathy, and / or neuropathy, 
respectively. Diabetes was diagnosed according to 
the criteria of the World Health Organization.24,25 
To maximize homogeneity of the study group, we 
included patients with T2DM who were over 30 
years old and in whom diabetes was diagnosed 
at least 2 years earlier. Hypertension was defined 
as antihypertensive treatment or systolic blood 
pressure greater than or equal to 140 mm Hg 
and / or diastolic blood pressure greater than or 
equal to 90 mm Hg. Dyslipidemia was defined as 
total cholesterol level exceeding 5 mmol/l or lev‑
el of triglycerides exceeding 1.7 mmol/l or level 
of LDL cholesterol greater than 1.8 mmol/l.26,27 
Peripheral blood for DNA isolation and assess‑
ment of biochemical parameters was obtained 
by antecubital vein puncture. The study was ap‑
proved by the Jagiellonian University Bioethics 
Committee. All patients provided informed con‑
sent to participate.

Genotyping and biochemical tests  DNA was iso‑
lated using the QiaAmp Mini Blood Kit (QIA‑
GEN, Hilden, Germany) according to the man‑
ufacturer’s recommendations. DNA amplifica‑
tion was performed using the T3 Thermocycler 
(Biometra, Göttingen, Germany) and Hot Star 
Taq Polymerase (QIAGEN). The following prim‑
er pairs were used for amplification: for C242T, 
FW‑5’-TGCTTGTGGGTAAACCAAGGCCGGTG‑3’ 
and RV‑5’-AACACTGAGGTAAGTGGGGGTGG
CTCCTGT‑3’28 and for A‑930G, FW‑5’-AAACC
ACCAAGTGCCTCGGATGGTGGCT‑3’ and RW
‑5’-CCAGCGCCCATGGGAAGACTTTAGACCT‑3’. 
Polymerase chain reaction (PCR) consisted of 
15‑minute denaturation (95 ºC), 40 cycles of de‑
naturation (94 ºC/45 s), annealing (60 ºC/45 s), 
elongation (72 ºC/45 s) and final 10‑minute 
elongation (72 ºC). Products of PCR were sub‑
sequently incubated with restriction enzymes, 
RsaI (Fermentas, Burlington, Ontario, Cana‑
da; 0.1 U/µl; 37 ºC/16 h) or BbvI (Fermentas, 
0.06 U/µl, 65 ºC/16 h) to identify genotypes of 
the coding sequence (C242T) or promoter region 
(A‑930G) polymorphisms, respectively. Identi‑
fication of genotypes was performed following 
agarose gel electrophoresis by 2 independent 

transcriptomic profile and thus may lead to se‑
vere cardiovascular events, including myocardi‑
al infarction and stroke.3-5

Hyperglycemia causes alterations in the cellu‑
lar redox state and leads to increased production 
of reactive oxygen species (ROS).6 Additionally, 
autoxidation of glucose and oxidation of glycat‑
ed protein fragments may be a source of signif‑
icant amounts of ROS and lead to cellular inju‑
ry.7 The main vascular sources of superoxide an‑
ion are enzymes of nicotinamide adenine dinu‑
cleotide phosphate (NAPDH) oxidase (NOXs) 
and dysfunctional endothelial nitric oxide syn‑
thase (eNOS).8 Recent studies have demonstrat‑
ed a stimulating effect of glucose and advanced 
glycation end‑products on NOX activity.9,10 High 
glucose concentration induces NOX expression 
and superoxide anion production in human endo‑
thelial cells, leading to endothelial dysfunction.11 
Superoxide anion exaggerates oxidation process‑
es, including oxidation of polyunsaturated fatty 
acids in low-density lipoprotein (LDL) particles, 
which promotes atherosclerosis. Numerous clin‑
ical studies have shown that NOX activity corre‑
lates with various risk factors for atherosclero‑
sis, including T2DM.8

The NOX complex consists of 2 membrane 
subunits, p22phox and gp91phox / NOX2 (or 
one of its homologues—NOX1, NOX3, NOX4, 
or NOX5), 3 cytoplasmatic subunits (gp‑
67phox, p47phox, and p40phox), and a G-pro‑
tein (Rac).12 While vascular subunits associated 
with p22phox—NOX1 and NOX2—are thought 
to have a deleterious effect on the cardiovascular 
system due to inactivation of nitric oxide (NO), 
the role of NOX4 is more complex.13 The presence 
of the p22phox subunit is crucial for enzyme ac‑
tivity, and 2 polymorphisms of this gene, that 
is, C242T in the coding region (which changes 
histidine‑72 to tyrosine) and A‑930G in the pro‑
moter region, have been intensively studied as 
modulators of oxidative stress and atherosclero‑
sis progression.14-20 Importantly, the functional 
consequences of genetic polymorphisms may be 
revealed particularly under “stress” conditions, 
that is, in the presence of factors that overload 
the cardiovascular system, such as T2DM.21

The present study aimed to evaluate the rela‑
tionship between the missense C242T (rs4673) 
and promoter region A‑930G (rs9932581) poly‑
morphisms of the p22phox subunit of NOXs, en‑
coded by the cytochrome b‑245 alpha chain (CYBA) 

What’s new?

The current study found a protective effect of the T allele of the missense rs4673 
polymorphism of the cytochrome b‑245 alpha chain (CYBA) gene, encoding 
the p22phox subunit of nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase, on flow‑mediated dilatation in patients with type 2 diabetes mellitus. 
A growing body of evidence suggest that this particular genetic variation may 
have important phenotypic consequences in diseases related to endothelial 
function and redox balance, such as diabetes and cardiovascular diseases.
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liquid chromatography–mass spectrometry (LCQ 
Finnigan Matt; Adaptas SIS, Palmer, Massachu‑
setts, United States). Samples were incubated 
with sodium hydroxide to liberate the bound 
MDA and with perchloric acid to precipitate pro‑
teins. Afterwards, the supernatant was extract‑
ed 2 times with n‑hexane and the organic phase 
was analyzed.

Clinical tests  Flow‑mediated dilatation (FMD)
was evaluated as a marker of endothelial func‑
tion through the measurement of brachial ar‑
tery diameter before and after acute 5‑minute 
occlusion (with a sphygmomanometer cuff) us‑
ing techniques consistent with the guidelines,30 
as described and validated before.31 Briefly, as‑
sessments were performed with a Toshiba Xario 
Ultrasound System SSA‑340A ultrasonograph, 
type BF (Toshiba, Tokyo, Japan) and a 8-MHz 
linear transducer. Before the examination, pa‑
tients were placed in a supine position for 15 
minutes in a calm and darkened room. The right 
arm was immobilized and a blood pressure cuff 
was placed and inflated around it to at least 200 
mm Hg in order to achieve brachial artery occlu‑
sion for 5 minutes. Diastolic measurements were 
performed before cuff inflation and then subse‑
quently 1, 2, and 5 minutes after cuff deflation.

Nitroglycerin‑mediated dilatation (NMD) 
was measured to investigate non–endothelium
‑dependent vasodilation. Vessel diameter was as‑
sessed before and 1, 2, and 5 minutes after sublin‑
gual application of 400 µg of nitroglycerin. Ves‑
sel diameter was measured as a distance between 
2 M‑lines, according to the original Celermajer’s 
methodology.32 Maximum FMD (FMDmax) and 
NMD (NMDmax) were calculated as 100 × (peak 
vascular diameter after hyperemia or nitroglycer‑
in application – baseline vascular diameter) / base‑
line vascular diameter.33,34

Intima‑media thickness (IMT) measurements 
were performed using the standard method and 
the same device as described previously.31 Brief‑
ly, assessments were performed at 12 different 
points on the right and left common carotid ar‑
teries, measuring the distance between the bor‑
der between the artery lumen and carotid artery 
intima and the second bright M‑line (the border 
between the media and adventitia). On the ba‑
sis of the measurements, the mean and maxi‑
mum IMT (IMTmean and IMTmax) were calculated.

Statistical analysis  Correlations between 2 con‑
tinuous variables were evaluated by the Spear‑
man test, while associations between categorical 
variables were tested using the Pearson’s χ2 test. 
Differences between the genotypes, as well as re‑
cessive and dominant effects of the analyzed sin‑
gle-nucleotide polymorphisms (SNPs), were test‑
ed using the Kruskal–Wallis and Mann–Whitney 
tests, respectively. Logistic regression was used to 
test the effect of SNPs on dichotomized FMDmax 
(based on the median value) or ischemic heart 
disease with additional adjustment for potential 

researchers in the following way: 348 bp band 
(allele C) and 160 + 188 bp bands (allele T) for 
the C242T polymorphism and 318 bp band (al‑
lele A) and 232 bp band (allele G) for the A‑930G 
polymorphism.

Standard laboratory tests including glucose 
level, lipid profile as well as creatinine, C‑peptide, 
and glycated hemoglobin levels were performed. 
Measurement of plasma levels of von Willebrand 
factor (vWF) was performed with Enzyme‑Linked 
Immunosorbent Assay (ELISA) utilizing rabbit 
antibodies (DAKO, Glostrup, Denmark). Assess‑
ments of malondialdehyde (MDA) plasma lev‑
els were performed by a modified method de‑
scribed by Sim et al29 using high‑performance 

TABLE 1  Clinical characteristics of study patients with type 2 diabetes mellitus 
(n = 182)

Parameter Value

Clinical characteristics

Age, y, mean (SD) 56 (7)

Male sex, n (%) 91 (50)

Arterial hypertension, n (%) 161 (88.4)

Dyslipidemia, n (%) 179 (98.3)

Ischemic heart disease, n (%) 86 (47.2)

History of myocardial infarction, n (%) 22 (12.1)

Obesity (BMI ≥30 kg/m2), n (%) 109 (59.8)

BMI, kg/m2, mean (SD) 32.7 (6.5)

Microangiopathic complication, n (%) 104 (57.1)

Current smoking, n (%) 39 (21.4)

FMDmax, %, median (IQR) 8.8 (6–12.3)

NMDmax, %, median (IQR) 15.2 (11.8–18.9)

IMTmean, mm, median (IQR) 0.84 (0.73–0.93)

Biochemical parameters, median (IQR)

Total cholesterol, mmol/l 5.1 (4.5–5.9)

LDL cholesterol, mmol/l 2.9 (2.4–3.6)

HDL cholesterol, mmol/l 1.1 (1–1.3)

Triglycerides, mmol/l 1.9 (1.4–2.9)

C‑peptide, mg/ml 3.0 (1.7–4)

Creatinine, µmol/l 75.3 (65.7–87.6)

HbA1c, % 7.6 (6.8–8.8)

Treatment or medication use, n (%)

Only diabetic diet 13 (7.1)

Oral antidiabetic medication 115 (63.2)

Insulin 96 (52.7)

Angiotensin converting enzyme inhibitor 140 (76.4)

Diuretic 91 (50)

Statin 90 (49.5)

Acetylsalicylic acid 79 (43.4)

β‑Blocker 67 (36.3)

Calcium channel blocker 43 (23.1)

Nitrate 27 (14.8)

α‑Blocker 14 (7.7)

Abbreviations: BMI, body mass index; FMD, flow‑mediated dilatation; HbA1c, glycated 
hemoglobin; HDL, high‑density lipoprotein; IMT, intima‑media thickness; IQR, 
interquartile range; LDL, low‑density lipoprotein; NMD, nitroglycerin‑mediated dilatation
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low (below median) FMDmax additionally adjust‑
ed for mean IMT (odds ratio [OR] [95% CI], 0.25 
[0.08–0.8]; 0.55 [0.33–0.93], and 0.31 [0.11–0.91] 
for tests involving TT vs CC genotype compari‑
son, additive, and recessive models, respective‑
ly). These associations remained robust after ad‑
ditional adjustment for age, current smoking sta‑
tus, or BMI (data not shown). No significant as‑
sociation between the C242T polymorphism and 
NMD level was observed (Figure 2C). Genotypes of 
the A‑930G polymorphism were not significantly 
associated with maximal FMD (Figure 2B). More‑
over, no significant association was found when 
recessive and dominant models of inheritance 
were tested. Similarly, no significant relationship 
was found between the genotypes of the A‑930G 
polymorphism and NMD (Figure 2D). To check 
whether the CYBA gene polymorphisms corre‑
late with clinical outcome of the disease, we test‑
ed their association with ischemic heart disease; 
however, no significant results were observed (OR 
[95% CI], 1.42 [0.9–2.23] and 1.2 [0.76–1.9] for 
an additive [ie, per‑minor allele] model testing the 
A‑930G and C242T polymorphisms, respectively).

Association between the C242T and A‑930G poly-
morphisms and drug use or level of biochemical pa-
rameters  Levels of vWF and MDA (Figure 3A–3D) 
or biochemical parameters, except for total cho‑
lesterol level (Table 2), did not significantly differ 
between the genotypes studied. We additionally 
tested whether the C242T and A‑930G polymor‑
phisms were associated with the use of medica‑
tions reported by patients (Table 1); however, no 
significant association was found between these 
SNPs and oral antidiabetic medications, insulin, 
angiotensin converting enzyme inhibitors, diuret‑
ics, statins, acetylsalicylic acid, α- or β‑blockers, 
nitrates, or calcium channel blockers in genotyp‑
ic, recessive or dominant models in the Pearson’s 
χ2 test (data not shown).

Discussion  The main finding of the current 
study is the demonstration of a protective effect 
of the T allele of the C242T CYBA polymorphism 

confounders. Concordance of the genotypes with 
the Hardy–Weinberg equilibrium was tested with 
the Pearson’s χ2 test. A significance level of P less 
than 0.05 was assumed for statistical tests. Sta‑
tistical analyses were performed using Statisti‑
ca (version 7.1; Stat Soft, Inc., Tulsa, Oklahoma, 
United States) and SPSS (version 25.1; IBM Corp, 
Armonk, New York, United States).

Results  Patients’ characteristics  The study 
group included 182 patients with T2DM (Table 1). 
The most common risk factors for atherosclero‑
sis among the investigated patients were hyper‑
tension and dyslipidemia, while ischemic heart 
disease was diagnosed in nearly half of the sub‑
jects (Table 1). As expected,31 we observed a neg‑
ative correlation between mean IMT and maxi‑
mal FMD, which provided additional validation 
of our protocol (R = –0.44; P <0.001). Interest‑
ingly, a significant correlation between maximal 
NMD and mean IMT (R = –0.37; P <0.001) was 
observed as well.

Association between CYBA gene polymorphisms and 
intima media thickness, endothelial function, or isch-
emic heart disease  Based on the frequencies of 
minor T242 and A‑930 alleles (37.9% and 39.8%, 
respectively), the studied SNPs were common in 
the T2DM population. Distribution of both poly‑
morphisms did not significantly deviate from 
the one expected based on the Hardy–Weinberg 
equilibrium. Moreover, no linkage disequilibrium 
was observed between the C242T and A‑930G 
polymorphisms (D’ = 0.12; R2 = 0.005).

We found no significant differences in mean 
IMT between the genotypes of both studied poly‑
morphisms (Figure 1A and 1B). We observed a sig‑
nificant association of the C242T polymorphism 
with maximal FMD in diabetic patients, that is, 
TT homozygotes were characterized by a sig‑
nificantly elevated FMDmax compared to CC ho‑
mozygotes (median [interquartile range]: 11.1% 
[8.5%–13.1%] vs 8% [5.7%–12.1%] respectively; 
Figure 2A). The observed association was confirmed 
in a logistic regression model estimating odds for 

Figure 1�  Mean intima‑media thickness (IMT) in carotid arteries among patients with different genotypes of the C242T (A) and A‑930G (B) 
polymorphisms. Boxes represent 25%–75%, while whiskers represent 10%–90% of the mean IMT values.
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in mice overexpressing p22phox41 additionally 
points to inflammatory pathways as a link be‑
tween oxidative stress, obesity, insulin resistance, 
and diabetes, supported by both human and an‑
imal studies.8

Nair et al42 demonstrated decreased maximal 
FMD and increased IMT values in diabetic pa‑
tients compared with controls. Impairment of 
these parameters may precede diabetic vascular 
complications42 and correlate with the level of NO 
metabolites in chronic renal failure,43 while FMD 
negatively correlates with the number of compli‑
cations in diabetic indviduals.44 The above stud‑
ies emphasize the need for detailed characteriza‑
tion of both genetic and environmental factors in‑
fluencing FMD and IMT in patients with T2DM.

Letonja et al45 found that the NADPH C242T 
polymorphism was not associated with the de‑
gree of oxidative stress and carotid atherosclero‑
sis in a group of Slovenian patients with T2DM. 
On the other hand, Hayaishi‑Okano et al46 dem‑
onstrated that T2DM patients with the CT + TT 
genotype were characterized by significantly low‑
er mean IMT than T2DM patients carrying the CC 
genotype. Interestingly, no such relationship was 
observed in controls. Additionally, lower fast‑
ing plasma insulin concentration was observed 
in patients carrying the 242T allele.46 The above 
data suggest that the effect of the C242T CYBA 

on endothelial function in patients with T2DM. 
This is of importance since, to our knowledge, 
the association of the CYBA gene polymorphisms 
and endothelial function has not been tested in 
diabetic patients so far.

Type 2 diabetes mellitus coexists with and is 
an important risk factor for cardiovascular dis‑
eases that are often characterized by endotheli‑
al dysfunction.3,35,36 Activation of NOX enzymes 
plays an important role in increased ROS produc‑
tion and contributes to the loss of NO bioavail‑
ability, endothelial dysfunction, and cardiovas‑
cular pathology.8,37 Of interest, elevated activa‑
tion of NOX has been found in an animal mod‑
el of 3 comorbidities, including hyperglycemia, 
which resulted in an impaired endothelial func‑
tion of coronary arteries as well as left ventricu‑
lar dysfunction.38 Overall, this implicates a medi‑
ating effect of NOX isoforms in the development 
of vascular dysfunction in T2DM.

Both experimental and clinical studies re‑
vealed that endothelial dysfunction is reversible 
by inhibition of NOX enzymes or by ROS scav‑
engers.39,40 Furthermore, mice lacking the func‑
tional p22phox gene are protected against leptin 
resistance and high‑fat feeding–induced weight 
gain, while mice overexpressing p22phox devel‑
op characteristics of metabolic syndrome.41 In‑
duction of T cell infiltrate into perivascular fat 

Figure 2�  Flow‑mediated dilatation (FMDmax; A and B) and nitroglycerin‑induced dilatation (NMDmax; C and D) of brachial arteries in patients with 
different genotypes of the C242T (A and C) and A‑930G (B and D) polymorphisms. Boxes represent 25%–75%, while whiskers represent 10%–90% of 
the FMDmax or NMDmax values.
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or TT genotype compared with those carrying 
the CC genotype in a population‑based sample of 
young healthy adults. This is in agreement with 
our results and raises a question about the pos‑
sible modification of the effect of the C242T SNP 
in diseased individuals. Of note, Fan et al49 ob‑
served an average difference of approximately 
0.9% in brachial artery FMD between carriers of 
the CC and TT genotypes. The effect observed in 

polymorphism on carotid artery atherosclero‑
sis may depend on the ethnic background of pa‑
tients with T2DM.

While the T allele of the C242T CYBA poly‑
morphism has been associated with lower odds 
for metabolic syndrome47 and fatal events relat‑
ed to coronary artery disease48 compared with 
the C allele, Fan et al49 observed an improved 
endothelial function in individuals with the CT 

Figure 3�  Association of the C242T (A and C) and A‑930G (B and D) CYBA polymorphisms with von Willebrand factor (vWF; A and B) and 
malondialdehyde (MDA; C and D) levels. Boxes represent 25%–75%, while whiskers represent 10%–90% of the vWF or MDA level values.
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TABLE 2  Level of biochemical parameters according to the genotypes of the CYBA polymorphisms studied

SNP C242T A‑930G

Genotype CC CT TT GG GA AA

Total cholesterol, 
mmol/l

5.05 (4.47–5.67) 4.89 (4.33–5.93) 5.45a (4.95–6.5) 5.12 (4.63–6.01) 5.09 (4.44–5.73) 4.72 (4.33–5.5)

Triglicerydes, 
mmol/l

1.79 (1.27–2.95) 1.94 (1.44–2.6) 2.35 (1.56–3.13) 2.01 (1.33–2.93) 1.9 (1.34–2.65) 2 (1.52–2.91)

LDL cholesterol, 
mmol/l

2.88 (2.42–3.44) 2.87 (2.28–3.63) 3.08 (2.49–3.92) 3 (2.55–3.67) 2.86 (2.26–3.63) 2.73 (2.3–3.03)

HDL cholesterol, 
mmol/l

1.1 (1–1.34) 1.13 (0.95–1.29) 1.24 (0.94–1.43) 1.1 (0.94–1.33) 1.18 (1–1.37) 1.1 (0.93–1.28)

C‑peptide, mg/ml 3.31 (1.6–4.44) 2.9 (1.79–3.74) 2.82 (1.83–4.04) 2.99 (2.04–4) 2.74 (1.59–3.94) 3.23 (2.08–4.34)

Creatinine, µmol/l 78.55 (68.38–94.53) 75.2 (64.2–87.35) 70.7 (62.5–81.03) 76.5 (63.8–93.4) 75.1 (65.8–87.2) 75.3 (69.8–84.3)

HbA1c, % 7.6 (6.8–8.85) 7.4 (6.3–8.7) 7.8 (6.8–8.85) 7.4 (6.58–8.88) 7.95 (6.8–9.05) 7.4 (6–8.1)

Data are presented as median (IQR).

a  P = 0.03 as compared with the CC/CT genotypes

Abbreviations: CYBA, cytochrome b‑245 alpha chain; SNP, single-nucleotide polymorphism; others, see Table 1
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