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as nonrestorative sleep and excessive daytime 
sleepiness (EDS).7,8

In addition to EDS, OSA is associated with re‑
duced quality of life, poor cognitive function, 
and road traffic accidents, independent of age or 
sex.9-11 The principal morbidity and mortality of 
the condition, however, are due to the increased 
risk of the development and progression of nu‑
merous CVDs.4

A  large body of evidence has accumulated 
to date strengthening the association between 
OSA and CVD, with increased risk persisting af‑
ter correction for common cardiovascular risk 
factors.12 Obstructive sleep apnea is associated 
with increased incidence of systemic arterial hy‑
pertension, coronary artery disease, congestive 
cardiac failure, and stroke,4,13,14 and although 

Introduction  Obstructive sleep apnea (OSA) is 
a growing public health problem.1 The prevalence 
of the disorder has been increasing rapidly over 
the last 2 decades in line with the obesity epidem‑
ic in the developed world.2-4 It is estimated that 
OSA affects nearly 1 billion people worldwide. 
However, a significant proportion of patients re‑
main undiagnosed,5 with one estimate suggest‑
ing that more than 30 million people are undiag‑
nosed in Europe alone.1 There is a male to female 
predominance of 2 to 1, and OSA is more com‑
mon in the middle‑aged and elderly population.6

Obstructive sleep apnea is characterized by 
recurrent partial or complete upper airway col‑
lapse during sleep leading to intermittent hy‑
poxia (IH) and recurrent arousals culminating in 
disrupted sleep quality that typically manifests 
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Abstract

Obstructive sleep apnea (OSA) is an increasingly prevalent health concern characterized by repeated 
episodes of pharyngeal collapse during sleep. It is frequently associated with daytime sleepiness 
and impaired functional capacity, but it is also linked to cardiovascular disease by a growing body of 
epidemiological, clinical, and translational research. The severity of OSA is traditionally evaluated by 
the apnea‑hypopnea index (AHI), but the value of this marker as a predictor of cardiovascular outcomes 
is limited. Thus, there is an increasing focus on alternative classification methods such as the hypoxic 
burden, other polysomnographic traits, and phenotypic subgroups based on clinical symptoms. There 
is a need to identify subgroups of patients with OSA who will benefit most from treatment, as recent 
large randomized controlled trials in selected populations have failed to show benefit in reducing overall 
cardiovascular mortality. Obstructive sleep apnea adversely affects cardiovascular structure and function 
by several distinct mechanisms such as intermittent hypoxia, sleep fragmentation, and intrathoracic 
pressure swings. These mechanisms lead to sympathetic activation, inflammation, and oxidative stress, 
which may result in the clinical consequences of OSA such as hypertension, coronary artery disease, heart 
failure, and cerebrovascular disease. This review focuses on the epidemiology and potential mechanisms 
of cardiovascular diseases in OSA. Furthermore, we will briefly discuss the role of personalized medicine, 
alternative treatment options, and precise phenotyping to optimize treatment of this complex condition 
and its associated cardiovascular risk.
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relationship between OSA and systemic arterial 
hypertension.20 Cross‑sectional population‑based 
studies consistently find an increased prevalence 
of hypertension in patients with OSA compared 
with controls. This finding persists even after con‑
trolling for potential confounders such as age and 
obesity, with approximately 50% of patients with 
OSA having coexisting hypertension.21-24 Stud‑
ies also show increased likelihood of hyperten‑
sion with increasing severity of OSA. In the Sleep 
Heart Health Study (n = 6132), the prevalence of 
hypertension was 59%, 62%, and 67% in mild, 
moderate, and severe sleep apnea, respectively.22

Conversely, large prospective longitudinal stud‑
ies, such as the WSCS (Wisconsin Sleep Cohort 
Study),21 and a later prospective Spanish study, 
found moderate‑to‑severe OSA to be an indepen‑
dent risk factor for incident hypertension in pa‑
tients who were normotensive at baseline.25 In 
the WSCS, participants with moderate‑to‑severe 
OSA had a 3.2‑fold increase in the odds of devel‑
oping hypertension compared with those without 
OSA21 and similarly, in the Spanish study, there was 
an increased incidence of hypertension in patients 
with untreated OSA compared with those not un‑
dergoing treatment.25 Even mild OSA has been re‑
ported as an independent risk factor for incident 
hypertension in patients younger than 60 years.26

the evidence for these associations is not fully 
conclusive,15 it points towards a significant bur‑
den of disease caused by OSA.

The gold standard treatment for OSA is contin‑
uous positive airway pressure (CPAP), which acts 
to splint the upper airway open during sleep and 
very effectively treats excessive daytime sleepi‑
ness16 and improves quality of life.17 However, its 
effect on long‑term cardiovascular outcomes has 
been called into question by a number of recent 
studies (Table 1) which we will discuss below. One 
potential reason for this lack of benefit is poor 
adherence to CPAP in both research and gener‑
al populations.18

This review aims to summarize the epidemiol‑
ogy of CVD in patients with OSA, the current evi‑
dence on pathogenic mechanisms linking OSA and 
cardiovascular disease (CVD), and briefly discuss‑
es the clinical implications and effects of CPAP 
and other treatment modalities, in order to iden‑
tify priorities for future research and promote 
a move towards personalized therapies.

Epidemiology of cardiovascular diseases in obstruc-
tive sleep apnea S ystemic arterial hypertension  
Hypertension is a  well‑recognized and well
‑studied complication of OSA19 with epidemi‑
ological data suggesting that there is a strong 

TABLE 1  Trials assessing the impact of therapy on cardiovascular events in patients with obstructive sleep apnea

Trial descriptor Outcomes Treatment Design, number of 
participants, treatment

Median 
follow
‑up, y

Primary outcome and results

Sánchez‑de‑la
‑Torre et al, 2020 
(ISAACCS)46

Prevalence of composite 
outcome of 
cardiovascular events 
(cardiovascular death or 
nonfatal events)

CPAP 
+ usual 
care vs 
usual care 
alone

2834 patients admitted with 
ACS, evaluated for OSA 
with polysomnography and 
randomized if AHI >15 
events/h of sleep, control 
group without OSA included 
for comparison

3.35 No difference between groups in 
the incidence of the primary outcome 
of repeat cardiovascular events. OSA 
was not associated with an increased 
risk of cardiovascular events during 
follow‑up when compared with 
controls. OSA was associated with 
an increased risk of recurrent 
cardiovascular events in patients with 
no previous heart disease and 
admission for a first ACS

McEvoy et al, 
2016 (SAVE)137

Composite outcome of 
death from cardiovascular 
causes, myocardial 
infarction, stroke, or 
hospitalization for 
unstable angina, heart 
failure, or transient 
ischemic attack

CPAP 
+ usual 
care vs 
usual care 
alone

2717 nonsleepy patients 
with moderate‑severe OSA 
and established 
cardiovascular disease

3.7 No difference in the incidence of 
the primary composite outcome 
measure or any secondary outcome 
measure. Secondary analysis of 
patients adherent to CPAP 
for >4 h/night showed a lower risk of 
death and of stroke.

Peker et al, 2016 
(RICCADSA)136

First event of repeat 
revascularization, 
myocardial infarction, 
stroke, or cardiovascular 
mortality

CPAP vs no 
CPAP

244 patients with moderate 
or severe OSA who did not 
have daytime sleepiness 
underwent coronary 
revascularization prior to 
trial randomization

4.75 No difference between groups in 
the incidence of the composite 
endpoint. In the intention‑to‑treat 
analysis adherence >4 h/night had 
lower cardiovascular risk than 
untreated patients or those receiving 
CPAP <4 h/night

Barbé et al, 
2012129

Incidence of systemic 
hypertension or 
cardiovascular event

CPAP vs no 
CPAP

725 nonsleepy patients with 
AHI, >20 events/h of sleep 
with no previous 
cardiovascular disease

4 No difference between groups in 
the incidence of the composite primary 
outcome. A post hoc analysis 
suggested a relative risk reduction of 
28% in occurrence of primary outcome 
in patients who were adherent to CPAP 
therapy (>4 h/night)

Abbreviations: ACS, acute coronary syndrome; AHI, apnea‑hypopnea index; CPAP, continuous positive airway pressure; OSA, obstructive sleep apnea
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while the relationship between OSA and CAD in 
women is weaker.42

Imaging studies have also suggested a rela‑
tionship between CAD and OSA, with a num‑
ber of studies linking OSA and coronary artery 
calcification (CAC). Coronary artery calcification 
is of interest as a possible surrogate marker for 
primary prevention studies of CAD in patients 
with OSA, although little is known to date about 
the influence of CPAP therapy on coronary im‑
aging findings. A report from this department 
found a significant relationship between OSA se‑
verity and the presence and volume of subclinical 
coronary atherosclerosis, with the relationship 
remaining when controlled for potentially con‑
founding factors.43 Another German community
‑based observational study found that OSA was 
independently related to the amount of CAC 
found on computed tomography in men under 
65 years, and a North American community
‑based study found a high prevalence of OSA 
in patients with CAC and an AHI of more than 
30 events/h of sleep independently predicted 
the prevalence of CAC.

Congestive cardiac failure  Sleep‑disordered 
breathing accompanies up to 75% of chronic con‑
gestive heart failure cases,48 and the hazard ra‑
tio for OSA as a risk factor for incident heart fail‑
ure with both reduced ejection fraction and heart 
failure with preserved ejection fraction (HFpEF) 
was 2.4 in one large study.49 The severity of IH has 
been shown to be a stronger predictor of outcome 
than the number of apnea episodes per night. In 
one study of patients with congestive heart fail‑
ure, those with minimum oxygen saturation lev‑
els in the lowest quartile had a 5‑year survival 
of 50%, while those in the highest quartile had 
a 5‑year survival of 80%.50

The pathophysiology of HFpEF is linked to oxi‑
dative stress, sympathetic nervous system activa‑
tion, and systemic inflammation, all of which are 
also linked to OSA and to other common comor‑
bidities such as diabetes and obesity.51 Similarly, 
OSA is strongly linked to the development of atri‑
al fibrillation (AF) and hypertension, which may 
additionally promote the development of the con‑
dition. Data are lacking as to whether treatment 
with CPAP may ameliorate the progression of HF‑
pEF; however, one small observational study of 36 
patients with HFpEF and moderate‑severe OSA 
suggested that treatment with CPAP improved 
symptoms, cardiac diastolic function, and brain 
natriuretic peptide (BNP).52

Both OSA and central sleep apnea are prevalent 
among patients with heart failure. Central sleep 
apnea in patients with heart failure tends to be 
associated with Cheyne‑Stokes breathing, and is 
characterized by central apneas that occur dur‑
ing the decrescendo portion of the cyclic respi‑
ratory pattern.53 Treatment of central sleep ap‑
nea in patients with heart failure in general was 
called into question by the SERVE‑HF study,54 
which found a higher incidence of all‑cause and 

Notably, hypertension in OSA has several dis‑
tinctive characteristics, with an increased prev‑
alence of resistant hypertension, masked hyper‑
tension, and nondipping nocturnal blood pres‑
sure patterns observed in the OSA population.

Resistant hypertension is defined as failure 
to achieve blood pressure (BP) control to levels 
less than 140/90 mm Hg despite pharmacologi‑
cal treatment with 3 antihypertensive drugs (in‑
cluding a diuretic).27 The association between 
OSA and hypertension appears to be particular‑
ly prominent in this subgroup. In studies, OSA 
is found in up to 83% of patients with resistant 
hypertension.28,29 Also, patients with resistant 
hypertension have a 2.5‑fold increased risk of 
OSA compared with other hypertensive partic‑
ipants.30 Finally, a meta‑analysis of randomized 
controlled trials (RCTs) has shown improved BP, 
in particular nocturnal BP in patients with OSA 
and resistant hypertension treated with CPAP.31

Often, OSA and nocturnal hypertension are not 
recognized or are masked. Distinct from white-
coat hypertension, where BP is elevated in clinical 
environments but normal at other times, people 
with masked hypertension have normal BP on re‑
view, but elevated BP at other times.32 Masked hy‑
pertension is a common feature in patients with 
OSA, with an increased prevalence in that popu‑
lation compared with the general population,33,34 
and is associated with dyslipidemia, increases in 
arterial stiffness, increased risk of diabetes, sus‑
tained hypertension, and CVD.32

Studies involving 24‑hour ambulatory BP mon‑
itoring have shown that a nondipping nocturnal 
blood pressure, defined as a drop in blood pressure 
at night of less than 10%, is particularly preva‑
lent in OSA populations.35,36 Furthermore, a non‑
dipping BP pattern is highly suggestive of OSA, 
regardless of symptom profile, and the presence 
of a nondipping nocturnal blood pressure profile 
is associated with an increased incidence of car‑
diovascular events regardless of the underlying 
blood pressure value.37 In one normotensive co‑
hort of patients, the adjusted hazard ratio of car‑
diovascular events in nondippers was 2.44 com‑
pared with dippers.38 Moreover, cardiovascular 
events are more frequent in patients with OSA 
and a nondipping BP profile even in the absence 
of diagnosed hypertension.39

Coronary artery disease / ischemic heart disease  
The  SHHS (Sleep Heart Health Study) and 
the WSCS have provided much of the data re‑
garding coronary artery disease (CAD) and OSA. 
The WSCS participants were younger and had 
a much stronger association between CAD and 
OSA, whereby an AHI of more than 30 events/h of 
sleep resulted in a 2‑fold risk of incident coronary 
artery disease.40 On the other hand, the SHHS re‑
ported an equivocal relationship between OSA 
and incident CAD, finding an increased risk in 
men younger than 70 years with a hazard ratio 
of 1.68.41 Meta‑analyses support the theory that 
OSA confers an increased risk of CAD in men, 
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Cerebrovascular disease and stroke  Obstruc‑
tive sleep apnea is an independent risk factor 
for stroke,14 it often progresses following stroke, 
and it is associated with poorer functional out‑
comes,66,67 cognitive impairment, higher mortal‑
ity,14,68,69 and stroke recurrence, thereby impact‑
ing on both primary and secondary prevention. 
Overall, after adjusting for potential confound‑
ers (age, sex, body mass index, smoking, hyper‑
tension, and diabetes), untreated OSA conveys 
a 2‑fold increased risk of stroke.70

Several prospective studies have shown an in‑
dependent association of moderate‑severe OSA 
and stroke. In the WSCS, an AHI of more than 20 
events/h of sleep was associated with an increased 
risk of stroke over the subsequent 4 years.71 A pro‑
spective community‑based study found men with 
an AHI of more than 15 events/h of sleep con‑
ferred a 3‑fold increased risk of stroke,72 while 
another study showed a 2‑fold increased risk, in‑
dependent of vascular confounders.14 The risk of 
stroke is higher in men and increases with increas‑
ing AHI,72,73 with a meta‑analysis confirming that 
moderate to severe OSA increases the risk of non‑
fatal or fatal stroke (pooled relative risk [95% CI], 
2.02 [1.4–2.9])42 in this population.

In addition, observational studies suggest that 
OSA negatively influences stroke outcome by pre‑
disposing to stroke recurrence, increasing the risk 
of mortality post stroke and worse functional re‑
covery with increased disability. There is a high 
prevalence (50%) of sleep disorders after stroke, 
although only a small proportion of patients are 
referred for sleep testing in the 3‑month post
‑stroke period.74 A 10‑year study showed that pa‑
tients with moderate to severe OSA, independent 
of disability, had a 75% increase in risk of early 
death compared with those without OSA.69 Ob‑
structive sleep apnea predicts worse functional 
outcomes in stroke, being independently associ‑
ated with worse functional impairment,67 worse 
modified Rankin scale scores at discharge,75 and 
a longer rehabilitation stay67 as compared with 
those without OSA. Hypertension, and specifi‑
cally a nondipping BP pattern, is implicated in 
these adverse outcomes.67

Currently there is insufficient evidence as to 
whether CPAP provides benefit to patients post 
stroke with regards to functional and neurologi‑
cal recovery. Observational studies suggest that 
CPAP is associated with reduced stroke risk,76 im‑
proved cognitive and function outcomes77 and 
mortality,68 but these trials were limited by poor 
CPAP tolerance and adherence.78 Furthermore, 
a meta‑analysis of available RCTs failed to dem‑
onstrate benefit of CPAP treatment on stroke 
risk reduction, although patients who are ad‑
herent (>4 hours per day) may still benefit and 
thus, a trial of treatment may still be justified.70 
The ongoing Sleep SMART (Sleep for Stroke Man‑
agement and Recovery Trial) is a multisite pro‑
spective RCT whose primary outcome is to deter‑
mine the effect of CPAP on reducing stroke recur‑
rence, incidence of ACS and all‑cause mortality, 

cardiovascular mortality in patients with central 
sleep apnea treated with adaptive servo-ventila‑
tion (servo‑controlled inspiratory pressure sup‑
port on top of expiratory positive airway pres‑
sure). Posited reasons for this negative outcome 
included a reduction in cardiac output with pos‑
itive airway pressure in some patients, or a pos‑
sible beneficial aspect to the Cheyne‑Stokes res‑
piration seen in central sleep apnea and eliminat‑
ed by adaptive servo-ventilation. A more recent 
meta‑analysis incorporating this study conclud‑
ed that periodic short‑term adaptive servo-ven‑
tilation may be of benefit as an adjunctive thera‑
py for patients with central sleep apnea and heart 
failure; however, prolonged treatment may have 
negative effects, possibly due to the accumulat‑
ing stress on the heart working harder against 
long‑term positive airway pressure.55

Cardiac rhythm disorders: atrial fibrillation  Obstruc‑
tive sleep apnea is highly prevalent in patients 
with newly diagnosed AF. One recent study found 
that 82.4% of patients had a positive home sleep 
apnea test result.56 Of those, 31.6% had moder‑
ate sleep apnea and 23.3% had severe sleep ap‑
nea. Screening for sleep apnea in this study re‑
sulted in initiation and long‑term adherence to 
CPAP therapy in 45% of these patients.

Obstructive sleep apnea is established both 
as an independent predictor of stroke in pa‑
tients with AF57 and as a significant risk factor 
for the development and recurrence of AF.58 Sev‑
eral international guidelines for the management 
of AF recommend diagnostic workup and treat‑
ment of obstructive sleep apnea,59,60 as untreat‑
ed disease has been shown to reduce the efficacy 
of both pharmacological and catheter‑based an‑
tiarrhythmic therapy. The presence of OSA in‑
creases the risk of developing AF with a relative 
risk of 1.7, as found by a recent meta‑analysis.61 
Multiple observational studies have suggested 
that CPAP treatment may lower the rate of AF 
recurrence following electrical cardioversion,58 
though data from RCTs are lacking.

Interestingly, symptomatology characteristic 
of OSA is less predictive in this population than 
in the general OSA population. Neither the STOP
‑BANG questionnaire nor the Epworth Sleepiness 
Scale were predictive of OSA in a large cohort of 
paroxysmal AF patients.62 Another study found no 
correlation between self‑reported daytime sleep‑
iness and AHI in 442 consecutive patients with 
paroxysmal or persistent AF, and the Epsworth 
Sleepiness Scale had no correlation with OSA se‑
verity in this population.63

Data tend to support the possibility that in‑
tervention reduces paroxysmal AF. In a meta
‑analysis of 7 prospective cohort studies involv‑
ing 1087 patients, the use of CPAP was associat‑
ed with a reduction in AF recurrence, irrespec‑
tive of whether they underwent pulmonary vein 
isolation.64 This beneficial effect appears to be 
stronger for younger, male patients and those 
with obesity.65
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intrathoracic pressure. This generates increased 
LV transmural pressures and contributes to in‑
creased afterload.95 Venous return is also in‑
creased which augments right ventricular pre‑
load, with consequential right ventricular dis‑
tension and leftward septal displacement during 
diastole impairing LV filling. The combined ef‑
fects of increased LV afterload and reduced pre‑
load leads to a reduction in stroke volume and 
cardiac output.96 This effect is more pronounced 
in heart failure patients.95

Also, increased LV transmural pressure in‑
creased myocardial oxygen demand, while apnea
‑induced hypoxia leads to coronary vasoconstric‑
tion and reduced oxygen delivery. Overall, both 
in animal and human studies, these changes lead 
to myocardial ischemia, impaired contractility, 
and impaired diastolic relaxation, which over 
time likely contribute to cardiac remodeling and 
disease.97,98

Proarrhythmogenesis  Increased LV afterload due 
to intrathoracic pressure swings causes acute dis‑
tension of thin‑walled atria, leading to vagal ac‑
tivation and shortening of the atrial effective re‑
fractory period, promoting arrhythmogenesis. 
Moreover, simulating obstructive apnea using 
the Mueller maneuver in healthy subjects is pro‑
arrhythmogenic99 resulting in generation of atrial 
premature beats (shown to be a triggering event 
in paroxysmal atrial fibrillation) and prolongs 
ventricular repolarization. Furthermore, as pre‑
viously mentioned, ventricular remodeling over 
time as a consequence of repetitive effects of neg‑
ative intrathoracic pressure alterations is associat‑
ed with an increased risk of arrhythmogenesis.100

In summary, IH, sleep fragmentation and in‑
trathoracic pressure swings are the principal con‑
tributors to the pathogenesis of CVD in OSA. 
As a net consequence, they trigger intermediate 
pathogenic pathways, as detailed in Figure 1, cul‑
minating in adverse cardiovascular outcomes. 
Briefly, some of these intermediate mechanisms 
are discussed below, but as these mechanisms are 
complex, a full discussion is outside the scope of 
this review and have been comprehensively ex‑
plored elsewhere.101

Intermediate mechanisms  Sympathetic activa‑
tion  Sympathetic activation has been shown to 
be implicated in OSA‑associated AF,58 heart fail‑
ure,51 and hypertension.102 Several studies have 
provided evidence of sympathetic excitation in pa‑
tients with OSA. Early clinical studies observed 
increased urinary catecholamines in patients with 
OSA when compared with controls, which fell post 
tracheostomy.103 Later studies have confirmed 
elevated urinary and circulating (plasma) cate‑
cholamines in patients with OSA,104 while CPAP 
has been shown to lead to a significant fall.105,106

Evidence from animal and experimental stud‑
ies imply that IH and recurrent arousals are like‑
ly the principal initiators. In rats, an increase in 
catecholamine levels accompanies a rise in BP in 

and impact on stroke outcome at 3 months, which 
may provide a more conclusive answer on the role 
of CPAP in stroke.

Mechanisms of cardiovascular disease in obstructive 
sleep apnea  Intermittent hypoxia  Intermittent 
hypoxia is the term given to the repetitive fluc‑
tuations in oxygen tension.79 Obstructive sleep 
apnea causes a typical pattern of IH with repeti‑
tive short cycles of desaturation followed by rapid 
full reoxygenation. It has been shown that IH has 
different pathophysiological sequelae to chron‑
ic sustained hypoxia.80 Mild IH seen typically in 
patients with mild OSA may be cardioprotective 
via mechanisms similar to ischemic precondition‑
ing.81 However, severe IH as commonly seen in 
moderate‑severe OSA has been shown in animal 
studies to cause a sustained rise in blood pres‑
sure,82,83 to accelerate the course of atheroscle‑
rosis,84,85 and to increase susceptibility to myo‑
cardial infarction.86 These findings have been cor‑
roborated by a human model of IH using healthy 
volunteers sleeping in hypoxic tents with oscil‑
lations in oxygen saturation, which found a sus‑
tained rise in BP after 14 nights of exposure.87 In 
vitro studies have provided further insight into 
IH‑induced cellular responses and signaling mech‑
anisms, such as the state‑of‑the‑art model devel‑
oped by our laboratory.88 These mechanistic data 
tie in with findings from clinical studies demon‑
strating that markers characterizing the degree 
of IH are better predictors of hypertension and 
other CVD than the AHI.89-91

Sleep fragmentation / recurrent arousals  Recurrent 
arousals occur in response to interrupted venti‑
lation with subsequent hypoxia, hypercapnia, 
and increased respiratory effort in order to re‑
store ventilation and lead to sleep fragmentation 
and subsequently to EDS, the primary symptom 
of OSA. Epidemiological data suggest that day‑
time sleepiness is predictive of elevated cardio‑
vascular risk and sleep fragmentation has been 
suggested as an underlying mechanism. Ren et 
al92 reported that EDS objectively demonstrat‑
ed by multiple sleep latency testing was an in‑
dependent predictor of prevalent hypertension 
in patients with OSA. Mechanistic data are in‑
conclusive in this area; one study found that 12 
weeks of sleep fragmentation in mice caused de‑
velopment of endothelial dysfunction and early 
structural vascular changes,93 but a recent short‑
er study (30 days) in mice found no impact on 
left ventricular (LV) function in healthy or heart 
failure mice.94 Thus, the detailed contribution 
of sleep fragmentation to CVD requires further 
translational studies.

Intrathoracic pressure swings  Increased left ven‑
tricular transmural pressures  Repeated pressure 
changes during apneic events have an adverse 
effect on the cardiovascular system. During 
an obstructive event, forced inspiration against 
an occluded airway generates a large negative 
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inflammation.80,91 Visceral adipose tissue has 
emerged as a key source organ of proinflamma‑
tory mediators in OSA corroborated by several 
preclinical studies demonstrating that IH induc‑
es a proinflammatory phenotype of adipose tis‑
sue.88,116 However, while the impact of IH‑induced 
adipose tissue inflammation on metabolic diseas‑
es is well‑explored, further studies are required 
to delineate the role of adipose tissue on vascu‑
lar inflammation and subsequent CVD in OSA.

However, despite numerous studies showing 
inflammation as an important mediator in IH
‑induced CVD, the role of anti‑inflammatory treat‑
ment on the impact of cardiovascular outcomes 
is poorly investigated.

Oxidative stress  Oxidative stress results from 
an imbalance between the production of reac‑
tive oxygen species (ROS) and antioxidant mech‑
anisms to eliminate them. While ROS play a key 
role in regulating cell function, at high concentra‑
tions, ROS may lead to oxidative stress and subse‑
quent cell damage.117 Oxidative stress is thought 
to be a central mechanism in CVD with evidence 
from cell culture and animal studies linking ox‑
idative stress to the pathogenesis of endotheli‑
al dysfunction, vascular inflammation, and ath‑
erosclerosis.118,119 This process is mostly mediat‑
ed through disruption of the vasoprotective ni‑
tric oxide axis.119

In OSA, repetitive episodes of hypoxia, fol‑
lowed by reoxygenation, likely illicit cell dam‑
age through ROS production.120 Several animal 
studies have demonstrated that IH leads to surg‑
es of ROS and lipid peroxidation. In rodent mod‑
els, IH-induced oxidative stress is characterized 
by superoxide anion production, increase in lip‑
id peroxidation in vessels, heart, and brain, and 
an increase in nicotinamide adenine dinucleo‑
tide phosphate oxidase expression.121,122 Also, 
in rodents, the beneficial effects of antioxidant 
treatment during IH has been shown, with abol‑
ishment of endothelial dysfunction, vascular re‑
modeling, and hypertension.121 However, the role 
of oxidative stress in CVD in humans remains 
controversial. Studies evaluating oxidative stress 

response to IH.107,108 Moreover, carotid body de‑
nervation, adrenal medulla removal, and admin‑
istration of adrenergic receptor antagonists have 
been shown to abolish the rise in BP associated 
with IH.109 Healthy participants exposed to IH 
show signs of sympathetic activation character‑
ized by an increase in the activity of the sympa‑
thetic peroneal muscle nerve.87

Sleep fragmentation also plays a  role. 
Taylor et al110 found that the arousal index was 
the strongest index of daytime muscle sympa‑
thetic activity in otherwise healthy participants.

Inflammation  Inflammation is involved in 
the pathogenesis of atherosclerosis and relat‑
ed CVD. Obstructive sleep apnea is associated 
with low‑grade systemic inflammation, charac‑
terized by circulating markers of inflammation, 
that is, C‑reactive protein, cytokines (eg, inter‑
leukin 6, tumor necrosis factor α), and adhesion 
molecules (vascular cell adhesion molecule 1).106 
Animal and cell culture studies have supported 
the critical role of IH as a potent inflammatory 
stimulus which is central to the pathogenies of 
vascular disease in OSA.73,84,85,111 Murine stud‑
ies, using apolipoprotein E‑knockout mice (ApoE-

/- mice) showed that atherosclerotic lesions in re‑
sponse to IH are associated with systemic and 
vascular inflammation.84 Furthermore, in mice 
fed a high‑cholesterol diet, IH led to atheroscle‑
rotic lesions which did not occur in control an‑
imals not exposed to IH.112 Also, cardiovascular 
remodeling has been shown in mice exposed to 
IH.113 Additionally, several experimental studies 
have shown that IH activates the transcription 
factor nuclear factor kappa B (NF‑κB), a key me‑
diator of proinflammatory responses.80 A mouse 
model of IH showed increased activation of NF
‑κB in cardiovascular tissues, while increased ac‑
tivation of NF‑κB was found in cultured mono‑
cytes of patients with OSAS.114,115 Furthermore, 
circulating downstream products of NF‑κB activa‑
tion such as tumor necrosis factor α are increased 
in OSA patients as compared with controls and 
fall with CPAP therapy supporting the key role 
of this transcription factor in OSA‑associated 
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study populations, CPAP adherence rates, sam‑
ple size, and duration of follow‑up. For exam‑
ple, most studies comprised patient with EDS. 
In those in which this cohort of patient was ex‑
cluded, no reduction in BP was shown following 
CPAP initiation,129 highlighting the importance 
of personalized treatment approaches.

The role of CPAP therapy on cardiovascular 
outcomes in general remains a topic of substan‑
tial debate. In the RICCADSA trial, 244 patients 
with moderate or severe OSA who did not have 
daytime sleepiness underwent coronary revascu‑
larization and were randomized to CPAP or con‑
servative treatment for 57 months.136 There was 
no difference in the composite endpoint of repeat 
revascularization, myocardial infarction, stroke 
and cardiovascular mortality in the intention
‑to‑treat analysis, but again, adherence of more 
than 4 h/night had lower cardiovascular risk than 
untreated patients or those receiving CPAP less 
than 4 h/night. In the SAVE (Sleep Apnea Car‑
diovascular Endpoints) study, patients with es‑
tablished cardiovascular or cerebrovascular dis‑
ease along with moderate‑severe OSA were ran‑
domized to CPAP plus usual care or usual care 
alone.137 The oxygen desaturation index was used 
to define moderate‑severe OSA, and the prima‑
ry outcome was a composite of death from car‑
diovascular causes, myocardial infarction, stroke, 
hospitalization for heart failure, acute coronary 
symptoms, or TIA. CPAP use did not significant‑
ly reduce occurrence of the primary endpoint in 
the intention‑to‑treat analysis. However, again 
propensity score‑matched analyses showed that 
patients with good CPAP adherence had a lower 
risk of stroke and a lower risk of the composite 
endpoint of cerebrovascular events.

Thus, it is clear that poor adherence to CPAP af‑
fects therapeutic response in patients with OSA, 
and that improved patient selection and pheno‑
typing is required for optimal treatment benefit. 
Furthermore, most studies excluded the most
‑sleepy patients, which represent a specific pheno‑
type that may not be representative of the gener‑
al OSA population in terms of comorbidity risk.138 
The recent report of Mazzotti et al,139 who evalu‑
ated the relationship of different symptom sub‑
types, indicated that the sleepiness subtype is as‑
sociated with a significantly higher incidence of 
adverse cardiovascular outcomes compared with 
other subtypes.

Future directions  A number of important ques‑
tions remain open regarding the diagnosis, risk 
stratification, and treatment of OSA. It is increas‑
ingly clear that conventional measures of OSA 
severity such as the AHI, do not correlate well 
with the severity of clinical symptoms,140-142 nor 
do they correlate optimally with associated car‑
diovascular morbidity and mortality.143 Mark‑
ers such as the hypoxic burden, which character‑
ize the severity of IH as a key pathophysiologi‑
cal trigger of CVD, appear to be better correlat‑
ed with end‑organ consequences of OSA. Data 

(by measuring oxidative stress markers such as 
F2‑isoprostanes, oxidized low‑density lipopro‑
tein) in OSA have yielded equivocal results. This 
may be due in part to differences in the number 
of participants, selection criteria, and study de‑
sign.123 Moreover, CPAP has failed to show bene‑
fit in several RCTs106 and so far, antioxidant treat‑
ment has failed to improve the cardiometabolic 
consequences of OSA, albeit this subject needs 
exploration in larger RCTs.124

Further, more detailed accounts of the patho‑
physiological processes that lead to adverse car‑
diovascular and metabolic outcomes in OSA are 
reviewed and detailed elsewhere.13,79,88,125

Effect of continuous positive airway pressure treat-
ment on cardiovascular events  The gold standard 
treatment for OSA is CPAP, which acts to splint 
open the upper airways during sleep, as men‑
tioned earlier. It has positive effects on daytime 
sleepiness and quality of life, but the long‑term 
treatment effect of adequate CPAP therapy on car‑
diovascular health remains controversial. There 
is consistent evidence in epidemiological studies 
that there are higher cardiovascular‑related mor‑
bidity and mortality rates in patients with severe 
untreated OSA than in patients on CPAP or pa‑
tients who do not have severe OSA.126 However, 
one major limitation of nonrandomized studies 
of CPAP treatment is that patients who are non‑
adherent to CPAP therapy may also be noncom‑
pliant with other aspects of chronic disease man‑
agement.127,128 Recent large‑scale randomized 
CPAP studies have attempted to define the ben‑
efits of CPAP, but adherence has been a univer‑
sal stumbling block.

One Spanish study looked at primary preven‑
tion of CVD by randomizing patients with mod‑
erate or severe OSA without daytime sleepiness 
to CPAP or conservative treatment.129 Their end‑
points included the need for antihypertensive 
drugs (AHT) or the development of a number of 
cardiovascular endpoints. No difference was found 
after 4 years of follow‑up between patients ran‑
domized to CPAP and those to conservative treat‑
ment. However, a post hoc subanalysis suggested 
that if adherence was more than 4 h/night, the in‑
cidence of AHT and cardiac events was reduced.

Studies evaluating the effect of CPAP on hy‑
pertension suggest a benefit of OSA treatment. 
Randomized controlled trials and meta‑analyses 
have found that CPAP significantly reduces sys‑
tolic and diastolic BP, albeit the effect size is small 
(mean, 2.6 mm Hg).130 However, this level of re‑
duction is clinically relevant as evidence suggests 
that a reduction in BP of 1 to 2 mm Hg is asso‑
ciated with a reduction in major cardiovascular 
events, stroke, and heart failure.131 Moreover, 
the benefit of CPAP might be more marked in 
those with resistant hypertension132 and when 
used in combination with drug therapy.133 How‑
ever, some studies failed to show a consistent 
benefit with CPAP on blood pressure.129,134,135 
The conflicting results may represent different 
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control instability,150 and benzodiazepines have 
been used to target a low arousal threshold.151 Fi‑
nally, there are studies ongoing into using trans‑
cutaneous electrical stimulation to increase neu‑
romuscular tone of the upper airway dilator mus‑
cles of patients with OSA during sleep.152

In summary, a personalized medicine ap‑
proach that encompasses a range of patient 
factors has an increasingly important role in 
this complex and multifactorial disease process. 
Some OSA phenotypes may drive CVD or meta‑
bolic dysfunction to a greater degree than oth‑
ers, and thus accurate phenotyping may be a bet‑
ter approach in the prediction of adverse out‑
comes or death than the AHI. Appropriate pa‑
tient selection will allow targeted use of CPAP 
and other therapeutic options, with the aim of 
improving long‑term cardiovascular health in 
this patient cohort.
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