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Paffenbarger et al4 demonstrated that cargo 
handlers sustained mortality from coronary 
artery disease (CAD) at a 27% lower rate than 
their less active counterparts. At the same time, 
Slattery et al5 were measuring cardiorespiratory 
fitness in a group of American railroad workers. 
The advantage of objectively measured cardiore­
spiratory fitness over classifying individuals ac­
cording to job status is that it more accurately 
reflects physical activity habits at the time of as­
sessment.6 The researchers5 followed the railroad 
workers for an average of 20 years and found that 
among the 2578 men who were free from diag­
nosed CVD when first examined, the least fit had 
the greatest risk of dying of coronary heart dis­
ease. Blair et al7 extended these findings by dem­
onstrating in a cohort of nearly 10 000 men that 
those who improved their fitness at subsequent 
medical examinations had an approximate 50% 
reduction in the risk of CVD mortality compared 
with those who were unfit at both examinations.

Since the publication of these landmark epide­
miological papers, further evidence has accumu­
lated that supports an independent and graded 

Introduction  Advancements in drug develop­
ment, medical devices, and imaging technologies 
have contributed to a significant decline in age­
‑adjusted death rates from cardiovascular diseas­
es (CVDs) over the last half century.1 Yet, accord­
ing to the World Health Organization, CVD re­
mains the leading cause of death across the globe, 
accounting for 32% of all global deaths in 2019. 
Moreover, out of the 17 million deaths that oc­
curred before the age of 70 years due to noncom­
municable diseases, 38% were caused by CVD. 
Fortunately, the clinical threshold at which most 
CVDs compromise the health of individuals can 
be prevented or delayed by addressing lifestyle 
risk factors. Apart from eating a “healthy” diet 
and avoiding tobacco products, increasing levels 
of physical activity and exercise offers the most 
promising preventative treatment of CVDs.2

In 1953, Morris et al3 reported that myocar­
dial infarction among double‑decker bus con­
ductors in London was about half the rate as 
among the sedentary bus drivers. Shortly there­
after, in an 18‑year follow‑up prospective study 
of over 3000 San Francisco longshoremen, 
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Abstract

Despite advances in drug development and medical treatments, cardiovascular diseases (CVDs) remain 
a leading cause of mortality across the globe. Fortunately, CVD can be delayed by engaging in appropriate 
lifestyle behaviors. An abundance of epidemiological evidence supports a direct association between 
increased levels of physical activity or cardiovascular fitness and reduced premature CVD morbidity 
and mortality. These data have been used as the basis for many medical organizations to issue physical 
activity guidelines to citizens to improve physical activity participation and, ultimately, reduce the risk of 
CVDs and other chronic diseases. Despite these efforts, physical activity participation around the globe 
remains low. The medical professional is well suited to promote exercise as a preventative treatment 
for CVD, although promotion efforts may be less effective without a clear understanding of the mecha‑
nisms through which exercise confers cardioprotection. Thus, the purpose of this review is to highlight 
the cardioprotective effects of exercise training and to explore the underlying mechanistic pathways that 
might explain these benefits. The review will focus on those physiological pathways that are directly 
involved in atherosclerotic disease development. They include hypercholesterolemia, hypertension, 
chronic inflammation, and insulin resistance.
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Furthermore, in 2007, the ACSM, in collabora­
tion with the American Medical Association, 
launched the Exercise is Medicine (EIM) non­
profit initiative designed to urge healthcare pro­
viders to assess physical activity levels of their 
patients, provide physically inactive patients 
with counseling, and prescribe exercise or re­
ferrals to physical activity resources.

Despite the publication of physical activity 
guidelines and EIM growing into a global health 
initiative with a presence in 40 countries, data 
from the United States indicate that levels of 
physical activity remain relatively low.20,21 This 
trend may, in part, reflect a reluctance by practi­
tioners to prescribe exercise, given the evidence 
from some studies suggesting that the risk of 
atrial fibrillation is increased in men who exer­
cise more often22,23 or at high intensities.24 Yet, 
the data on this topic are conflicting25 and while 
it is clear that the relative risks of sudden car­
diac death and acute myocardial infarction are 
higher during vigorous exercise compared with 
rest, the absolute risk of these cardiac events is 
extremely low, especially for those who are fre­
quently active.26 Indeed, there is overwhelming 
evidence that exercise is safe for most people 
and the ACSM has published a new exercise pre­
participation healthy screening model to elimi­
nate unnecessary diagnostic testing that may re­
sult in false positives and thus serve as a barrier 
to initiating exercise programs.26 Some have ar­
gued2 that expanding our knowledge of the bio­
logical links between physical activity and CVD 
risk would help to boost physical activity promo­
tion efforts. Indeed, if we are to convince medi­
cal professionals to embrace exercise as a medi­
cine and, in turn, widely prescribe it to their pa­
tients, a clear understanding of its mechanisms 
of action is imperative.

The overarching goal of this review is to ex­
plore ways in which exercise, a form of struc­
tured physical activity, helps to reduce the risk 
of CVDs. It should be stated at the onset that 
this review is not intended to provide an exhaus­
tive listing of all potential mechanistic pathways 
through which exercise confers cardioprotec­
tion. The list of these mechanisms is quite exten­
sive15,27 and it is beyond the scope of this paper 
to review them all. Nor is it intended to provide 
an in‑depth comparison of the effectiveness of 
exercise in relation to drug treatments or other 
lifestyle interventions (eg, diet, weight loss, or 
smoking cessation). Furthermore, whether a ge­
netic predisposition for certain CVD risk factors 
influences the responsiveness to exercise train­
ing is an important topic that has been widely 
studied,28-30 but one that will not be explored on 
the following pages. Instead, this review is de­
signed to provide the reader with a short, intro­
ductory primer on the topic. To provide the ap­
propriate context, we begin with a discussion of 
atherosclerosis, arguably the initiating event in 
CVD development and, consequently, the lead­
ing cause of CAD and stroke.

relationship between higher levels of physical 
activity and cardiorespiratory fitness and lower 
incidence of CVD outcomes.8-11 Importantly, the 
protective benefits extend to women as well. For 
instance, among 73 743 postmenopausal, ethni­
cally diverse women, those who reported a week­
ly energy expenditure score of over 10 metabol­
ic equivalent (MET) hours per week and at least 
100 minutes of vigorous exercise per week were 
about 60% less likely to develop CVD12 compared 
with women who reported less than 2 MET hours 
per week and no vigorous exercise. Moreover, 
data derived from the Women’s Health Study13 
show a linear reduction in CVD with a higher 
level of physical activity. Specifically, compared 
with a reference group of women who report­
ed less than 200 kcal per week burned during 
physical activity at the baseline visit, those who 
achieved an activity level of 200 to 599 kcal, 600 
to 1499 kcal, and more than 1500 kcal burned 
per week had relative risk reductions of CVD of 
27%, 32%, and 41%, respectively.13 Finally, in 
a representative cohort study14 of 4840 Amer­
ican men and women over the age of 40 years, 
those who took 8000 steps per day, compared 
with those taking 4000 steps per day, had low­
er CVD morality (ie, 2.1 vs 4.6 deaths per 1000 
adults per year) after adjustment for age, diet 
quality, body mass index, smoking status, and 
other CVD risk factors.

Given the strong evidence demonstrating that 
an “active” lifestyle is cardioprotective, (and, 
similarly, that a sedentary lifestyle is inherently 
dangerous),15 several nations have issued guide­
lines for physical activity participation. The first 
of these documents was issued by the Center for 
Disease Control and Prevention and the Ameri­
can College of Sports Medicine (ACSM) in 1995.16 
The objectives of these evidence‑based position 
statements are to encourage Americans of all 
ages to increase participation in physical activ­
ity and to provide guidance on the types and 
amount of exercise needed to promote good 
health and avoid chronic disease. Most recent­
ly, the American Heart Association and American 
College of Cardiology17 and the European Soci­
ety of Cardiology and European Atherosclerosis 
Society18 have published nutrition and physical 
activity guidelines specific for the primary pre­
vention of cardiovascular disease. With respect 
to general physical activity recommendations, 
both reports suggest that citizens achieve 150 
minutes per week of moderate‑intensity (3–5.9 
METs) physical activity or 75 minutes per week 
of vigorous‑intensity (>6 METs) physical activi­
ty, while emphasizing that individuals who can­
not meet these thresholds may accrue cardiopro­
tective benefits simply by increasing the physi­
cal activity levels above the baseline. A separate 
report, issued by the United States Preventa­
tive Services Task Force,19 advises that patients 
with known hypertension, dyslipidemia, or met­
abolic syndrome achieve 90 to 180 minutes per 
week of moderate to vigorous physical activity. 
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along the luminal surface of capillaries, produc­
ing free fatty acids and TRL remnants, which con­
tain more cholesterol than LDLs.32 These rem­
nants can be taken up by macrophages without 
being oxidized and, therefore, are considered to 
have a strong atherogenic effect.38 Thus, CVD risk 
can be reduced by improving the lipid “profile” (ie, 
lowering serum levels of LDL and triglycerides and 
raising HDL cholesterol).

The case for exercise  Evidence from the last sever­
al decades supports the notion that exercise train­
ing has a favorable effect on the blood lipid pro­
file.39-41 Leon et al39 reviewed 51 aerobic exercise 
interventions and found that the most commonly 
observed lipid change was an increase in the HDL 
cholesterol level (mean change across the studies 
reviewed was +4.6%). This improvement was ob­
served across studies utilizing moderate‑to‑high 
intensities of exercise in which diet was held con­
stant. Moreover, the magnitude of improvement 
in the level of HDL cholesterol was not associat­
ed with changes in aerobic fitness– or exercise­
‑induced changes in body weight. Significant re­
ductions in LDL cholesterol and triglyceride lev­
els were observed less frequently.

In a  large randomized controlled trial, 
Kraus et al42 examined the  effects of differ­
ent amounts and intensities of aerobic exer­
cise on blood lipids. They randomized 111 men 
and women with mild‑to‑moderate dyslip­
idemia to 8 months of either a high amount 
(jogging approximately 32 km/week) of high­
‑intensity exercise (65%–85% of peak oxygen 
consumption); a low amount (jogging approx­
imately 19.2 km/week) of high‑intensity exer­
cise; a low amount of moderate‑intensity exer­
cise (40%–55% of peak oxygen consumption); or 
6‑month control. The high‑high group exhibited 
a significant improvement in the levels of HDL 
cholesterol (+0.11378 mmol/l) and triglycerides 
(–0.7344 mg/dl), but no significant change in LDL 
cholesterol levels, compared with lesser intensi­
ty / amount of exercise. Still, O’Donovan et al43 
observed a significant reduction in LDL choles­
terol levels following 24 weeks of high-intensity 
(80% of aerobic capacity), but not lower-inten­
sity (60% of aerobic capacity) aerobic exercise 
in previously sedentary but otherwise healthy 
men. A more recent meta‑analysis41 indicates 
that high‑intensity aerobic interval training, (ie, 
periods of high‑intensity exercise interspersed 
with periods of active / passive recovery) is more 
effective at raising HDL cholesterol levels than 
moderate‑intensity continuous exercise, indepen­
dent of dietary or pharmaceutical interventions, 
for subclinical or clinical populations (eg, healthy 
or obese individuals taking usual medications). 
In contrast, exercise interventions40 that exam­
ined the effectiveness of resistance exercise (ie, 
strength‑developing exercises using body weight 
or external resistance) on lipid profiles have found 
significant reductions in LDL cholesterol and tri­
glycerides levels with greater volume of exercise 

Atherosclerosis  Atherosclerosis is a  disease 
of medium‑sized and large arteries character­
ized by chronic inflammation and fibroprolifer­
ation. Comprehensive reviews of this topic can 
be found elsewhere.31,32 Briefly, the develop­
ment of atherosclerosis begins with the extrava­
sation of low‑density lipoprotein (LDL) particles 
through a leaky and dysfunctional endothelial lay­
er into the subendothelial space, where they are 
oxidized and become proatherogenic. Adhesion 
molecules (eg, vascular cell adhesion moledule‑1 
[VCAM‑1], E‑selectin, P‑selectin) become upregu­
lated and help recruit circulating monocytes and 
T cells to the lesion.33 Monocytes bind to the en­
dothelial cells and migrate to the subendothe­
lial space. Once there, they engulf the oxidized 
LDLs and transform to lipid‑loaded macrophages 
that contain cholesteryl esters. The formation of 
these “foam cells” marks the first, asymptomat­
ic stage of atherosclerosis. Further progression 
of the disease involves an immunoinflammato­
ry response,34 followed by fibroproliferation that 
is mediated by the smooth muscle cells of the in­
tima layer. The reparative process conferred by 
the smooth muscle cells produces a collagen‑rich 
matrix which offers protection against plaque rup­
ture and thrombosis,35 although the consequence 
of unmitigated atherogenic stimuli is a capacious 
response that stiffens the vessel (contributing to 
high blood pressure), narrows the lumen, and re­
sults in ischemia.36 Ultimately, smooth muscle 
cell dysfunction or death leads to the destabili­
zation of a lipid-rich fibrous plaque that is fragile 
and prone to rupture. The coronary arteries are 
among the most vulnerable locations for occlu­
sion and plaque rupture. Not surprisingly, nearly 
80% of all fatal heart attacks worldwide are the re­
sult of the rupture of plaques in the coronaries.32

Atherosclerotic stimuli  Cholesterol  Elevated levels 
of serum cholesterol appear to be the major driv­
er of atherosclerotic plaque development in hu­
mans.31,37 Serum cholesterol is carried by lipopro­
tein particles that transport dietary and endoge­
nous lipids. Dietary lipids are carried by chylomi­
crons, whereas endogenously produced lipids are 
transported by LDLs and high‑density lipoproteins 
(HDLs). Very–low‑density lipoproteins (VLDLs) 
carry triglycerides (referred to as triglyceride‑rich 
lipoproteins [TRLs]) synthesized in the liver and 
intestines to capillary beds to provide a source of 
energy for target tissues.38 As alluded to above, 
the engulfing of LDL‑derived cholesterol by macro­
phages and their subsequent oxidation is the ma­
jor event leading to fatty streak formation. Con­
versely, HDL cholesterol prevents the modifica­
tion of LDLs, and is considered the major mech­
anism involved in transporting cholesterol away 
from a lesion site and back to the liver, a process 
referred to as “reverse cholesterol transport,” thus 
slowing the progression of plaque.32 Moreover, 
while LDL particles can leak through the endothe­
lial wall, VLDL particles cannot, due to their size. 
But once in circulation, VLDLs can be hydrolyzed 
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Education Program49 as a first‑line treatment for 
the prevention, treatment, and control of elevat­
ed blood pressure or hypertension. This recom­
mendation is bolstered by numerous randomized 
controlled trials that report a mean reduction of 
blood pressure of 5 to 7 mm Hg following aero­
bic exercise programs.50

There is general agreement across these govern­
ing bodies that exercise should be performed on 
most, if not all, days of the week. This is based on 
evidence of an immediate reduction in blood pres­
sure following a single, acute bout of aerobic ex­
ercise; a phenomenon referred to as postexercise 
hypotension.51 This reduction in blood pressure 
can be sustained for 24 hours after exercise.52 Im­
portantly, the magnitude of reduction appears to 
be dose‑dependent, as illustrated by Eicher et al,53 
who measured ambulatory blood pressure in 45 
pre- / stage 1 hypertensive men after they com­
pleted low‑intensity (40% of peak oxygen con­
sumption), moderate‑intensity (60% of peak ox­
ygen consumption), and high‑intensity (100% of 
peak oxygen consumption) exercise on a bicycle 
ergometer. The high intensity elicited the largest 
reduction in blood pressure (11.7/4.9 mm Hg), 
followed by moderate intensity (5.4/2.0 mm Hg) 
and low intensity (2.8/1.5 mm Hg). Moreover, 
a significant reduction in ambulatory blood pres­
sure (6/3 mm Hg) was observed among a group 
of adults with resistant hypertension (eg, blood 
pressure above 140/90 mm Hg despite using 3 an­
tihypertensive agents) who exercised at a moder­
ate intensity, 3 days per week for 8 to 12 weeks.54 
Also, in a study55 of 17 prehypertensive men and 
women who underwent blood pressure assess­
ment before and after acute exercise and following 
8 weeks of aerobic exercise training, it was report­
ed that the magnitude of reduction in blood pres­
sure following acute exercise was associated with 
the magnitude of decline in resting blood pres­
sure after chronic training. Finally, Moraes et al56 
reported significant reductions in resting blood 
pressure (–16/–12 mm Hg) among middle‑aged 
hypertensive patients who were deprived of anti­
hypertensive medications, following 12 weeks of 
moderate‑intensity resistance training.

Together, these data suggest the following: 
1) a dose‑response relationship exists between 
aerobic exercise intensity and improved blood 
pressure; although 2) lower intensities of exercise 
can be used to achieve clinically significant reduc­
tions in blood pressure among individuals with 
established hypertension but resistant to drug 
therapy; 3) blood pressure responses to acute ex­
ercise can be used to predict the magnitude of re­
sponse following chronic training; and 4) reduc­
tions in blood pressure are observed across dif­
ferent exercise modalities.52

Mechanisms of action  Cardiac output and total 
peripheral resistance contribute to mean arterial 
pressure and hence provide targets for antihyper­
tensive therapies. Yet, a major benefit of exercise 
training is an increase in cardiac output at rest. 

(eg, more sets and repetitions), but not necessar­
ily greater intensity (eg, higher loads).

Mechanisms of action  While the mechanisms ex­
plaining the beneficial effects of exercise on the lip­
id profile have not been entirely elucidated, it is 
clear that exercise improves the ability of the skel­
etal muscle to use lipids as the primary food sub­
strate, resulting in a reduction in plasma lipid lev­
els.44 This may be accomplished, in part, through 
the upregulation of lecithin cholesterol acyltrans­
ferase, the enzyme involved in HDL cholesterol for­
mation and, in turn, reverse cholesterol transport 
or through the upregulation of lipoprotein lipase, 
which hydrolyzes triglycerides into free fatty ac­
ids and promotes the cellular uptake of TRL rem­
nants. Previous data45 in well‑trained men suggest 
that an energy expenditure threshold (ie, approxi­
mately 1000 kcal) must be achieved to elicit an in­
creased lipoprotein lipase activity. This threshold 
is likely to vary depending on an individual’s pre­
vious exercise history, disease status (healthy vs 
hypercholesterolemic), intensity of exercise, age, 
sex, and exercise modality. While exercise‑induced 
changes in the levels of LDL cholesterol and tri­
glycerides appear less consistently across exer­
cise training studies than improvement in HDL 
cholesterol levels and may require higher intensi­
ties of aerobic exercise to achieve, it appears that 
activity‑induced improvements in HDL choles­
terol can offset any increases in LDL cholesterol 
and triglycerides.

High blood pressure  Hypertension tends to coex­
ist with hypercholesterolemia.46 The higher shear 
forces against the endothelial wall associated with 
chronically elevated blood pressure result in en­
dothelial damage, making vessels more vulnera­
ble to the incursion of LDLs to the subendotheli­
al space. It is also believed that vascular structur­
al and functional abnormalities (eg, endothelial 
dysfunction, vascular remodeling) precede clin­
ically diagnosed hypertension. Thus, hyperten­
sion may act as an atherogenic stimulus as well as 
contribute to atherosclerosis progression. More­
over, chronically high blood pressure has signifi­
cant consequences for the heart.47 Cardiac myo­
cytes grow larger in order to offset the increased 
arterial pressure; however, this increased growth 
is associated with an increased deposition of sur­
rounding collagen that requires greater blood 
supply and results in decreased ventricular com­
pliance. Eventually, the compensatory hypertro­
phy of the heart leads to subendocardial ischemia 
and heart failure. Since mean arterial pressure is 
the product of cardiac output and peripheral vas­
cular resistance, a reduction in one or both fac­
tors would, in theory, help to reduce the CVD risk.

The case for exercise  Aerobic exercise is rec­
ommended by the  American Heart Associa­
tion / American College of Cardiology,17 the Euro­
pean Society of Hypertension / European Society 
of Cardiology,48 and the Canadian Hypertension 
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the fluctuations in pressure with each beat of 
the heart. When arterial compliance is reduced, 
ventricular afterload is increased, resulting in left 
ventricular hypertrophy. Tanaka et al69 reported 
an improvement in arterial compliance of the ca­
rotid artery among middle- to older‑aged seden­
tary normotensive men (mean age, 53 years) fol­
lowing 3 months of aerobic exercise training (4 to 
6 days per week at 70%–75% of the maximum 
capacity). In contrast, systemic arterial compli­
ance was unaltered in adults with isolated systol­
ic hypertension after 8 weeks (3 days per week) 
of moderate‑intensity (65% of the maximum ca­
pacity) cycling.70 Similarly, 20 weeks (3 days per 
week) of moderate‑intensity (70% of the maxi­
mum capacity) aerobic exercise failed to alter ca­
rotid arterial stiffness in a group of older hyperten­
sives (mean age, 68 years).71 Finally, Stewart et al72 
found that while diastolic blood pressure improved 
following 6 months of combined aerobic and re­
sistance exercise in a group of older (55–75 years) 
hypertensive patients, no changes in systolic blood 
pressure or aortic stiffness were observed. These 
conflicting data suggest age- and hypertension­
‑related structural changes of elastic vessels re­
sulting in the fact that effect compliance may not 
be modified with exercise training.

Chronic inflammation  While the entrance of LDLs 
into the subendothelial space is arguably the ini­
tial event in the atherosclerotic process, inflam­
matory cells play a major role in every stage of 
its development.33,73 LDLs are oxidized by reac­
tive oxygen species which upregulate adhesion 
molecules (eg, VCAM‑1, intercellular adhesion 
molecule‑1 [ICAM‑1], E‑selectin, and P‑selectin), 
ultimately leading to the recruitment of mono­
cytes and T lymphocytes to the site of the lesion.74 
These, in turn, express a family of chemoattrac­
tant cytokines (eg, interferon γ, tumor necro­
sis factor‑α [TNF‑α], and interleukin‑6), which 
cause smooth muscle cells to impede into the sub­
endothelial space, eventually forming a fibrous 
cap.75 Vascular endothelial growth factor (VEGF) 
is produced by inflammatory cells in the athero­
sclerotic plaque. VEGF stimulates microvessel 
growth (along with endothelial progenitor cells 
[EPCs]) that is needed to supply the plaque with 
nutrition, but plaque rupture can lead to hem­
orrhage and thrombosis.76 Also, levels of C‑reac­
tive protein (CRP), which is produced in the liv­
er, start to rise in response to the inflammato­
ry process, which exacerbates endothelial dys­
function.74 As the vessel thickens at the point of 
the lesion, blood flow is impeded, causing isch­
emia. Following the plaque rupture, the subendo­
thelial factors that are exposed stimulate platelet 
activation and aggregation leading to thrombus 
formation and potentially triggering a stroke or 
myocardial infarction.73 Accordingly, treatments 
aimed toward lowering the factors associated with 
inflammation (or raising EPC expression) could 
affect atherosclerosis progression, enhance endo­
thelial function, and decrease cardiovascular risk.

Thus, the principle means through which exer­
cise is believed to maintain or lower blood pres­
sure is through the reduction in total peripheral 
resistance. A number of exercise‑induced vascular 
and autonomic adaptations have been proposed 
that potentially provide major contributions to 
blood pressure control.57 These adaptations are 
briefly discussed below.

Firstly, hypertensive patients exhibit heightened 
sympathetic control, which results in increased to­
tal peripheral resistance via vasoconstriction of ar­
terial beds.58 This may be the result of increased 
sensitivity of baroreceptors,55 located in the aor­
tic arch and carotid sinus, that are responsible for 
monitoring changes in blood pressure. There is ev­
idence that baroreceptor sensitivity is influenced 
by exercise.59 For example, in a group of hyperten­
sive patients, blood pressure and muscle sympa­
thetic nerve activity declined following 4 months 
of cycle exercise (3 times per week at 70% of max­
imum capacity), and these changes corresponded 
with improvements in baroreflex control such that 
the levels of sensitivity were reset to the levels ob­
served in normotensives.60

Secondly, exercise enhances vascular func­
tion through its effects on the local vascular con­
trol mechanisms. Specifically, exercise increas­
es the bioavailability of nitric oxide,61 a potent 
vasodilator, and decreases the bioavailability of 
endothelin‑1, a vasoconstrictor,62 both of which 
are secreted by the endothelial cells. This im­
provement in the nitric oxide vasodilator system 
with exercise training is seen consistently among 
groups of patients with CVD and risk factors and 
this is manifested as an improvement in endothe­
lial function.63 In a recent trial, Pedralli et al64 ob­
served similar improvements in endothelial func­
tion among patients with prehypertension or hy­
pertension who engaged in 8 weeks of aerobic, 
resistance, or combined exercise. Importantly, 
all groups experienced improvements in ambu­
latory blood pressure. Previously, Maeda et al65 
found that endothelin‑1 concentrations in previ­
ously sedentary normotensive older women (aged 
61–69 years) were higher than in younger women 
(21–28 years). However, the concentrations were 
reduced significantly following 3 months (5 days 
per week) of cycling exercise and were accompa­
nied by reductions in blood pressure.

Thirdly, in addition to improved endotheli­
al function, exercise training leads to increased 
vessel size in the conduit arteries that feed active 
muscle beds.66 This adaptation serves to normal­
ize the increases in shear stress associated with 
repetitive exercise bouts.67 Indeed, 6 months of 
resistance training that involved mostly upper 
body movement led to improved vasodilatory 
function and brachial artery remodeling, while 
6 months of aerobic exercise involving the legs 
led to improved vasodilatory function and size 
of the femoral artery.68

Lastly, there are some data suggesting that ex­
ercise increases the compliance of large elastic ar­
teries (eg, the aorta and carotids) which buffer 
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peripheral vascular disease and coronary artery 
disease), thus highlighting the importance of ex­
ercise as a tool for secondary prevention.

Insulin resistance  Insulin resistance is associ­
ated with the cluster of atherosclerosis risk fac­
tors described above (ie, hypercholesterolemia, 
hypertension, and chronic inflammation) and is 
thus a strong predictor of CVD in patients with 
type 2 diabetes.85 In insulin‑resistant states, in­
cluding obesity, glucose metabolism is impaired, 
resulting in augmented secretion of insulin by 
the β cells of the pancreas.86 At high levels, in­
sulin stimulates the growth and proliferation of 
vascular smooth muscle cells,87 it activates in­
flammatory pathways,88 results in a deficiency 
in nitric oxide and stimulation of endothelin‑1 
production,89 thus promoting vasoconstriction 
and atherogenesis. Since suboptimal diets act 
as the primary lifestyle factor that triggers insu­
lin resistance, exercise may not be sufficient as 
a solitary treatment. However, there is evidence 
of significant impact of exercise, independent 
of dietary change or weight loss, on the insulin­
‑resistant state.

The case for exercise  A series of reports provide 
strong evidence for the importance of exercise in 
the treatment of type 2 diabetes. Boule et al90 re­
viewed 7 randomized controlled trials that com­
pared the effects of aerobic exercise interventions 
(a mean of 3 sessions per week, at 50 minutes per 
session for 20 weeks) compared with nonexercise 
controls in patients with type 2 diabetes. As ex­
pected, the exercise interventions led to an ap­
proximate 12% increase in aerobic fitness com­
pared with no change in the controls. Interven­
tions that employed greater exercise intensities 
produced greater improvements in aerobic fit­
ness and blood glucose control, as defined by re­
ductions in glycated hemoglobin (HbA1c). The to­
tal exercise volume expressed as total weekly en­
ergy expenditure was not an important predictor 
of the change in either aerobic capacity or HbA1c. 
However, the same authors91 later suggested that 
a threshold of 150 minutes of weekly structured 
exercise per week must be achieved for signifi­
cant reductions in HbA1c to occur. In this way, 
in an updated analysis92 of 26 randomized con­
trolled trials that included aerobic, resistance, or 
combined exercise of at least 12 weeks in dura­
tion, it was reported that patients with a higher 
level of HbA1c at the beginning of an intervention 
experienced greater reductions in HbA1c and that 
the volume of weekly aerobic or combined exer­
cise was associated with HbA1c level reductions. 
Neither the volume nor intensity of resistance ex­
ercise (when performed as the sole modality) ex­
plained the subsequent change in HbA1c. Howev­
er, Church et al93 demonstrated in a group of pa­
tients with type 2 diabetes with HbA1c levels above 
6.5% that adding resistance exercise performed 
twice weekly to a moderate‑intensity aerobic ex­
ercise program (ie, 150 min/week at 50%–80% 

The case for exercise  There is strong evidence 
that exercise has positive effects on several, but 
not all, of the above factors involved in the ath­
erosclerosis process. These data have been sum­
marized and evaluated in a recent review.73 For 
instance, Schumacher et al,77 observed an in­
verse relation between the amount of physical 
work (ie, kilojoules / minute × minutes of exer­
cise) performed during an exercise test follow­
ing 6 months of aerobic exercise training and 
levels of TNF‑α, VCAM‑1, and CRP (see below) 
among patients with established CAD. In a group 
of patients with breast cancer, Pakiz et al78 re­
ported an association between the number of 
hours engaged in moderate‑to‑vigorous exercise 
over a 16‑week weight loss program that includ­
ed dietary counseling and favorable changes in 
TNF‑α levels. For those with chronic heart fail­
ure,79 12 weeks of aerobic exercise led to signifi­
cant reductions in ICAM and VCAM. Moreover, 
the improvement in aerobic fitness was correlated 
with the magnitude of reduction in these adhe­
sion molecules. Similarly, VEGF levels decreased 
by 9% and myocardial blood flow increased by 
33% in post–myocardial infarction patients af­
ter 3 months of exercise training.80

There is also evidence that both aerobic77,81 and 
resistance exercise82 reduces the levels of CRP. In 
addition to the abovementioned findings from 
Schumacher et al,77 Lara Fernandes et al81 found 
that CAD patients who underwent 4 months of 
aerobic exercise (60‑min sessions 3 times per 
week) of moderate‑to‑high intensity exhibited 
a decreased CRP level in response to an acute bout 
of exercise. Also, Olson et al82 randomized young 
(25–44 years), overweight women free from CVD 
to a resistance training program (twice weekly) 
or a control condition. They found significant re­
ductions in CRP levels, but not in the levels of ad­
hesion molecules, following 1 year of training.

Finally, some data suggest that exercise increas­
es the levels of EPC. For example, Schlager et al83 
showed that levels of EPC and maximal walking 
distance increased in patients with peripheral ar­
tery disease following 6 months of aerobic exer­
cise (eg, walking intermittently to claudication). 
Moreover, for older patients who underwent car­
diac surgery, levels of EPCs increased following 
just 15 days of cardiac rehabilitation that consist­
ed of moderate aerobic exercise, but only among 
patients who improved the 6‑minute walking dis­
tance by at least 23% from baseline.84

The above data suggest that there is a strong 
link between the magnitude of improvement in 
various factors involved in chronic inflammation 
and levels of fitness achieved through exercise 
training, implying a dose‑response relationship. 
Also, in contrast to what has been previously dis­
cussed regarding the effects of exercise on blood 
pressure (ie, older adults with established hyper­
tension may be resistant to exercise‑induced im­
provements in blood pressure), the exercise-me­
diated effects on inflammatory markers are ob­
served in those who have developed CVD (eg, 
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type 2 diabetes following just 1 bout of cycling 
exercise (ie, 45–60 min at 60%–70% of the max­
imum effort). GLUT‑4 is the glucose transport­
er that permits the facilitated diffusion of plas­
ma glucose into the muscle and fat cells. Final­
ly, GLUT‑4 activity is intricately linked to glu­
cose metabolism within the cell. While glycogen 
is the preferred energy source during exercise, as 
exercise is prolonged and glycogen stores become 
depleted, the muscle permeability to glucose is 
increased and there is a gradual shift from glyco­
gen to blood glucose to generate the adenosine 
triphosphate required for exercise.94 Altogether, 
by simultaneously enhancing the factors that im­
prove the delivery, transport, and metabolism of 
glucose, as well as enhancing insulin sensitivity, 
exercise provides a powerful treatment for CVD.

Conclusion  Cardiovascular disease remains 
the leading cause of death in the industrialized 
world. Luckily, increasing levels of exercise and 
improved aerobic fitness can dramatically reduce 
CVD risk. Evidence from randomized controlled 
trials and experimental studies suggest that struc­
tured exercise confers cardioprotection, in part, 
by targeting the intermediary mechanisms in­
volved in the atherosclerotic process; namely, 
hypercholesterolemia, hypertension, chronic in­
flammation, and insulin resistance. The efficacy of 
exercise for improving the lipid profile, reducing 
blood pressure and certain markers of inflamma­
tion, and improving blood glucose control in dia­
betes is well supported by the literature. A sum­
mary of the benefits and limitations of exercise 
training on atherosclerotic stimuli is provided in 
TABLE 1. A general understanding of these effects 
can be used to help support physical activity and 
exercise promotion efforts in health care settings.

of the maximum intensity), was superior after 
9 months with regard to decreasing HbA1c than 
engaging in aerobic or resistance training alone.

Together, these data suggest that for exercise 
to have a significant effect on the insulin‑resistant 
state, a minimum dose of approximately 150 min­
utes of accumulated exercise over the course of 
a week may be required. Additional beneficial ef­
fects may be achieved by increasing the intensity 
of aerobic exercise and resistance training may be 
most impactful when practiced in combination 
with an aerobic exercise intervention. Finally, those 
with better glycemic control and short diabetes 
duration may respond most favorably to exercise.

Mechanisms of action  The mechanisms through 
which exercise can ameliorate diabetes have been 
well studied.94 Evidence from experimental stud­
ies suggest a myriad redundant pathways that 
impact the delivery, transport of glucose across 
the muscle cell surface, and metabolism of glu­
cose in the muscle cell. It should be also stated 
that insulin sensitivity is increased for 48 hours 
after the completion of 60 minutes of moderate-
intensity cycling in healthy but untrained men.95 
While patients with type 2 diabetes also experi­
ence improved insulin sensitivity following ex­
ercise, the effect does not appear to be as long­
‑lasting (eg, >15 h post exercise).96 Briefly, regard­
ing glucose transport, increased glucose delivery to 
active muscles occurs as a result of increased blood 
flow that is proportional to exercise intensity, and 
increased glucose uptake is linked to increased lev­
els of skeletal muscle perfusion.97 Furthermore, 
it has been reported98 that glucose transporter‑4 
(GLUT‑4) concentrations are increased by approx­
imately 70% compared with baseline in both ap­
parently healthy individuals and patients with 

TABLE 1  The benefits and limitations of exercise training on atherosclerotic stimuli

Atherosclerotic 
stimuli

Benefits Limitations

Cholesterol •	 Moderate / vigorous AE is associated with an increase in HDL‑C levels (4.6%)
•	 Independent of changes in fitness / body composition / diet
•	 HIIT may be required for clinical populations
•	 RE volume more important than intensity

•	 LDL‑C and triglyceride levels not 
altered with AE
•	 AE of higher intensities may be 
required

Blood pressure •	 AE is associated with a decrease in BP (approximately 5–6 mm Hg)
•	 Dose response: the higher the AE intensity, the greater the decrease in BP
•	 Lower AE intensity may lead to a decrease in BP among patients with hypertension
•	 BP is responsive to RE

•	 Older patients with hypertension 
may be resistant to exercise 
adaptations

Chronic 
inflammation

•	 Increased AE volume is associated with decreased levels of TNF‑α, VCAM‑1, and CRP
•	 Dose response: markers improve as the level of fitness increases
•	 RE reduces CRP levels
•	 AE increases EPC levels in clinical populations

•	 AE or RE do not alter IL‑8, SDF‑1, or 
E‑selectin
•	 Inflammatory markers not altered in 
healthy populations

Insulin resistance • Increased AE intensity is associated with a decrease in HbA1c

•	 150 min/week of structured exercise needed for positive change
•	 Combined exercise (AE + RE) is associated with a greater decrease in HbA1c than 
AE or ER alone

•	 Patients with poor glycemic control 
or long diabetes duration may not be 
responsive to AE or RE

Abbreviations: AE, aerobic exercise; BP, blood pressure; CRP, C‑reactive protein; EPC, endothelial progenitor cell; HbA1c, glycated hemoglobin; 
HDL-C, high-density lipoprotein cholesterol; HIIT, high‑intensity interval training; IL‑8, interleukin‑8; LDL-C, low-density lipoprotein cholesterol; 
RE, resistance exercise; SDF‑1, stromal cell-derived factor 1; TNF‑α, tumor necrosis factor‑alpha; VCAM‑1, vascular cell adhesion moledule‑1
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