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ill patients. Although determination of the actual 
extent of fluid overload in such patients is chal‑
lenging, several methods of fluid overload quan‑
tification are worth taking into consideration, 
that is, clinical evaluation, cumulative fluid bal‑
ance (FB), chest X‑ray (CXR), ultrasound exami‑
nation, bioimpedance vector analysis, and inva‑
sive hemodynamic monitoring.3,6

The pulse indicator continuous cardiac out‑
put (PiCCO) system is an “all‑inclusive” he‑
modynamic monitoring procedure for the as‑
sessment of fluid load using transpulmonary 

Introduction  Fluid therapy for restoration and 
maintenance of tissue perfusion is a routine com‑
ponent of management of almost all critically ill 
patients.1 Early and adequate fluid resuscitation 
by intravenous injection is considered crucial for 
the stabilization of tissue hypoperfusion, especial‑
ly in patients with septic shock.2 However, there 
is accumulating evidence that fluid overload is 
associated with increased mortality and can also 
lead to progressive organ dysfunction.3-5 There‑
fore, early recognition of the fluid overload sta‑
tus is essential for the management of critically 
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Abstract

Introduction  Recent studies have highlighted adverse outcomes of fluid overload in critically ill patients. 
Therefore, its early recognition is essential for the management of these patients.
Objectives  Our aim was to propose a deep learning (DL) model using data from noninvasive chest 
X‑ray (CXR) imaging associated with the fluid overload status.
Patients and methods  We collected data from the Medical Information Mart for Intensive Care IV 
(MIMIC‑IV, v. 1.0) and MIMIC Chest X‑Ray (v. 2.0.0) databases for modeling, and from our hospital 
database for testing. The extravascular lung water index (ELWI) greater than 10 ml/kg and the global 
end-diastolic volume index (GEDI) greater than 700 ml/m2 were used as threshold values for the fluid 
overload status. A DL model with a transfer learning strategy was proposed to predict the fluid over‑
load status based on CXR images, and compared with clinical and semantic label models. Additionally, 
a visualization technique was adopted to determine the important areas of features in the input images.
Results  The DL model showed a  relatively strong performance for predicting the ELWI (area under 
the curve [AUC] = 0.896; 95% CI, 0.819–0.972 and AUC = 0.718; 95% CI, 0.594–0.822, respectively) 
and the GEDI status (AUC = 0.814; 95% CI, 0.699–0.930 and AUC = 0.649; 95% CI, 0.510–0.787, re‑
spectively) in both the primary and the test cohort. The performance was better than that of the clinical 
and semantic label models. 
Conclusions  As CXR is routinely used in the intensive care unit, a simple, fast, low‑cost, and noninvasive 
DL model based on this modality can be regarded as an effective supplementary tool for identifying fluid 
overload, and should be widely adopted in the clinical setting, especially when invasive hemodynamic 
monitoring is not available.
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Patients and methods D ata source  The data 
of the  primary cohort were extracted from 
the Medical Information Mart for Intensive Care 
IV (MIMIC‑IV, v. 1.0)21,22 and MIMIC Chest X‑Ray 
(MIMIC‑CXR, v. 2.0.0) databases.22-24 MIMIC‑IV 
is a relational database containing real critical 
care data of patients admitted to the Beth Isra‑
el Deaconess Medical Center between 2008 and 
2019.21,22 The MIMIC‑CXR database is a large, 
publicly available dataset of chest radiographs 
with free‑text radiology reports that contains 
377 110 images corresponding to 227 835 radio‑
graphic studies.22-24 One of the study investiga‑
tors (WZho) was allowed to download data from 
the databases, having completed the “Data or 
Specimens Only Research” course (record iden‑
tity, 25222342).

Patient records and CXR images for the exter‑
nal test dataset were obtained from the First Af‑
filiated Hospital of Wenzhou Medical Universi‑
ty after approval from that institution’s ethics 
committee (202302090921).

Informed consent of the study patients was 
not required because the present study did not 
use any protected health-related information or 
impacted clinical care.

Study design  A flowchart of the study process is 
shown in Figure 1. Patients with available PiCCO 
monitoring parameters assessed in the peri‑
od between 24 hours before and 24 hours after 
the CXR examination were enrolled in the study. 
We excluded patients aged 16 years or young‑
er, as well as those with repeated admissions 
to the ICU, the length of hospital stay shorter 
than 24 hours, CXR examinations performed 
outside the ICU, incomplete clinical data for fur‑
ther analysis, and comorbidities that interfered 
with the results of PiCCO monitoring, includ‑
ing pulmonary embolism, acquired or congenital 
absence of the lung, aortic aneurysm, congeni‑
tal heart disease (eg, atrial or ventricular septal 
defect, tetralogy of Fallot, patent ductus arteri‑
osus, and valvular regurgitation). The external 
test dataset was collected between July 1, 2017, 
and June 30, 2021, according to the same inclu‑
sion and exclusion criteria.

Data extraction  The data were extracted from 
MIMIC‑IV and the electronic medical records 
system of our hospital; detailed information is 
presented in Tables 1 and 2. The Sequential Organ 
Failure Assessment (SOFA) score was calculated 
based on the predefined criteria.25 FB was calcu‑
lated based on the following formula: FB = (to‑
tal fluid in − total fluid out) / admission weight.3 
All CXR images in the MIMIC‑CXR dataset have 
been assigned specific semantic labels by CheX‑
pert with binary mapping to 0 or 1 (Uncertain
‑Zeros model and Uncertain‑Ones model).26 Of 
note, CheXpert is a large dataset that contains 
a labeler to automatically detect the presence of 
14 observations in radiology reports, capturing 
uncertainties inherent in the interpretation of 

thermodilution technology.7 Extravascular lung 
water index (ELWI) is a measure of the vol‑
ume of water accumulated in the lungs out‑
side the pulmonary vascular system,7 whereas 
global end-diastolic volume index (GEDI), re‑
flecting the blood volume in the 4 chambers of 
the heart, is a quantitative volumetric variable 
that directly measures cardiac preload.7 ELWI 
and GEDI have been shown to be reliable indi‑
cators of the volume status, and to have a num‑
ber of advantages over traditional pressure pre‑
load parameters.7-10 However, the difficulty asso‑
ciated with repeated invasive procedures, com‑
plications during and after catheterization, un‑
reliable measurements in the presence of some 
specific cardiopulmonary diseases, and high 
testing costs limit the availability of the PiCCO 
monitoring. Therefore, a noninvasive and read‑
ily available method to predict the volume sta‑
tus of critically ill patients is required.

CXR is one of the most accessible and repeat‑
able examinations under routine conditions in 
the intensive care unit (ICU). Preliminary dis‑
crimination of patients with or without fluid 
overload during a CXR evaluation remains clin‑
ically important for ICU clinicians. Previous 
studies11-18 have explored the predictive values 
of chest radiography for ELWI and GEDI using 
subjective and objective CXR scores in critical‑
ly ill patients. However, the predictive perfor‑
mance of most CXR scoring systems was not 
satisfactory. In recent decades, artificial intelli‑
gence and deep learning (DL) have been widely 
used for research on medical imaging and have 
provided new prospects in the fields of medical 
diagnosis, treatment, and prognosis analysis.19 
Using a DL strategy, CXR was employed to di‑
agnose a wide spectrum of diseases from simply 
“abnormal findings” to more specific diagnoses, 
such as pneumonia, pneumothorax, and tuber‑
culosis.20 Nevertheless, there have been no pre‑
vious studies on the applicability of DL for pre‑
dicting the fluid overload status based on chest 
radiographs. Therefore, we proposed a DL mod‑
el to explore the CXR imaging information as‑
sociated with the fluid overload status based on 
the ELWI and GEDI values, and compared it with 
clinical and semantic label models.

What’s new?

In the present study we established a deep learning (DL) model based on 
chest X‑ray (CXR) images to predict the fluid overload status in critically ill 
patients. Validated by an  independent external test dataset, the DL model 
shows a relatively strong generalization performance. Additionally, as com‑
pared with previously reported CXR scores or our CXR label models, the DL 
model has certain advantages and the potential for clinical application. As 
CXR is routinely used in the intensive care unit, our DL model can be useful 
for identifying the fluid overload status, especially in the cases where inva‑
sive hemodynamic monitoring is unavailable. The present study is the first to 
combine data from the new MIMIC‑IV database and the MIMIC‑CXR database, 
providing a feasible ground for future research.
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Figure 1�  The flowchart of the study process 
Abbreviations: CXR, chest X-ray; DL, deep learning; ELWI, extravascular lung water index; GEDI, global end-diastolic volume 
index; ICU, intensive care unit; MIMIC-CXR, Medical Information Mart for Intensive Care‑Chest X‑Ray; MIMIC‑IV, Medical 
Information Mart for Intensive Care IV; PiCCO, pulse indicator continuous cardiac output; SVM, support vector machine
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(version 1.0) and MIMIC-CXR

(version 2.0.0) databases

Available PiCCO monitoring parameters
assessed in the period between 

24 hours before and 24 hours after 
CXR examination (80 patients and 

381 study points)

Exclusion of patients aged ≤16 years, with 
repeated admissions to the ICU, length 
of hospital stay <24 hours, and CXRs 

performed outside of ICU stay

Initial cohort
(77 patients and 340 study points)

Exclusion of patients with comorbities
that interfered with the results of PiCCO 

monitoring

Exclusion of patients with imcomplete
clinical data for further analysis

Exclusion of 16 patients without available 
PiCCO monitoring data, 41 patients 

without available CXR images, 7 patients 
aged ≤16 years, 6 patients with the length 
of hospital stay <24 hours, 1 patient with 
valvular regurgitation, and 1 patient with 

acquired absence of the lung

Secondary cohort
(74 patients and 324 study points)

Multimodel prediction
(DL model and SVM model)

Data collected from the First Affiliated 
Hospital of Wenzhou Medical University

External cohort built according to the
same inclusion and exclusion criteria

(38 patients, 63 study points 
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Final cohort
(67 patients, 295 study points, 

and 340 CXR images)

Normal ELWI vs elevated ELWI
Normal GEDI vs elevated GEDI
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format, resized to match the size of the net‑
work, and normalized.

Development, testing, and visualization of the deep 
learning model  The pipeline of the DL method 
with CXR images for predicting the ELWI and 
GEDI status is shown in Figure 2. The CXR imag‑
es in the MIMIC‑CXR dataset were randomly di‑
vided into training (80%) and validation (20%) 
sets during modeling, and those from our hospi‑
tal were used as a test set. The validation set was 
used to monitor model performance and protect 
against overfitting when training. We used 2 pre‑
trained networks, ResNet‑50 and Inception‑v3, 
convolutional neural networks 50 and 48 layers 
deep, respectively, to learn the natural image fea‑
tures from the ImageNet dataset.28,29 This trans‑
fer learning strategy is suitable for use with sparse 
datasets as it enlarges the training data. The de‑
tailed steps of transfer learning involve load‑
ing the data and pretrained network, replacing 
the last 3 layers with a new, fully connected lay‑
er, softmax layer, and classification output layer, 
fine‑tuning for our new classification problem by 
specifying the options of the new fully connected 
layer, specifying training hyperparameters, and 
training a new network. In addition, the optimiza‑
tion of stochastic gradient descent with momen‑
tum was used to train the weights with an initial 
learning rate of 0.0001, minibatch size of 16, drop 
factor of 0.1, drop period of 10, and momentum 
of 0.9. To avoid overfitting and improve general‑
ization, we adopted a strategy of multiple training 
networks (5 models), and each network was tested 
on the test dataset, with performance calculated 
for the average output. The final prediction score 
(Scorefinal) was then calculated using the follow‑
ing formulas weighted by the combined perfor‑
mance of ResNet‑50 and Inception‑v3:

ScoreResNet‑50 or Inception‑v3 = (Scoremodel‑1 + Scoremodel‑2 
+ Scoremodel‑3 + Scoremodel‑4 + Scoremodel‑5)/5;

radiographs.26 CXR labels of the external test da‑
taset were obtained by consulting the radiology 
reports. If a label was uncertain, 2 radiologists 
re‑read the CXR images to determine the final 
label by consensus.

We artificially set the examination time of each 
CXR as a study point. The mean values of PiCCO 
monitoring parameters and vital statistics as‑
sessed in the period between 24 hours before and 
24 hours after the corresponding study point were 
regarded as baseline data. We evaluated the SOFA 
score, central venous pressure (CVP), and physical 
examinations assessed or performed at the time 
point closest to the corresponding study point 
and within 24 hours before and after the corre‑
sponding study point. The same principle applied 
to the measurement of FB.

Pulse indicator continuous cardiac output monitoring 
parameters  The PiCCO monitoring parameters 
recorded were cardiac output, cardiac index, sys‑
temic vascular resistance index, ELWI, and GEDI. 
ELWI greater than 10 ml/kg and GEDI greater 
than 700 ml/m2 were regarded as threshold val‑
ues for the fluid overload status.

Chest X‑ray image acquisition and preprocessing  
All frontal CXR images were directly obtained 
from the MIMIC‑CXR‑JPG database (v. 2.0.0), 
which is wholly derived from MIMIC‑CXR, pro‑
viding JPG files converted from DICOM im‑
ages.22,23,27 To help prevent the network from 
overfitting and memorizing the exact details of 
the training images, a data augmentation meth‑
od with randomized operations including reflec‑
tion (X or Y axis), rotation (−180 ° to +180 °), 
rescaling (× 0.5 to × 2), horizontal translation 
(−50 pixels to +50 pixels), and vertical trans‑
lation (−50 pixels to +50 pixels) was used. Be‑
fore entering the network for training and val‑
idation, all images were converted to an RGB 

Figure 2�  The pipelines of the deep learning (solid lines) and support vector machine (dotted lines) methods using chest X‑ray images and clinical 
information for predicting the ELWI and GEDI statuses 
Abbreviations: CVP, central venous pressure; others, see Figure 1
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of score / probability for the ROC curve to 0.5. 
The Hanley and McNeil test was used to eval‑
uate the differences in the AUC values among 
the different models.31 Additionally, cumulative 
frequency and decision curve were used to ex‑
pansively interpret the predictive performance 
of the DL model.

A 2‑sided P value below 0.05 was considered 
significant. Statistical analyses were performed 
using the SPSS software, version 22.0 (SPSS, Chi‑
cago, Illinois, United States) and the MedCalc 
software, version 19.0.5 (MedCalc, Ostend, Bel‑
gium). The DL model was implemented using 
the MATLAB software, version R2020b (Math‑
Works, Natick, Massachusetts, United States).

Results B aseline characteristics  Baseline char‑
acteristics of the study patients and study points 
are summarized in Tables 1 and 2, respectively. Ac‑
cording to the threshold values of the parameters 
reflecting the fluid overload status, the patients 
were divided into groups with normal and elevat‑
ed ELWI and GEDI.

Development and testing of the deep learning model    In 
the primary cohort, a total of 340 CXR images (272 
images for training and 68 images for validation) 
were used to transfer learning on our binary classi‑
fication problems and build the predictive DL mod‑
els. Subsequently, 66 CXR images from our hospital 
were used to test independently the generalization 
performance of the DL models. As shown in Table 3, 
for both the validation and independent test data‑
sets, the DL models showed encouraging average 
performance for predicting the ELWI (AUC = 0.896; 
95% CI, 0.819–0.972 and AUC = 0.718; 95% CI, 
0.594–0.822, respectively) and the GEDI sta‑
tus (AUC = 0.814; 95% CI, 0.699–0.930 and 
AUC = 0.649; 95% CI, 0.510–0.787, respectively). 
The ROC curves of the DL models in the 2 datas‑
ets are plotted in Figure 3.

In addition, Figure 4A and 4B shows that the cu‑
mulative frequency curves of the DL scores re‑
vealed significant differences between the normal 
and elevated ELWI groups (P <0.001 in the val‑
idation dataset and P = 0.005 in the test datas‑
et) as well as between the normal and elevated 
GEDI groups (P <0.001 in the validation dataset 
and P = 0.05 in the test dataset) in the 2 datasets.

The decision curves of the DL models showed 
that when threshold probability was greater than 
15.2% for predicting the ELWI status or between 
36.8% and 83.2% for predicting the GEDI status, 
the DL models showed greater benefits than either 
treat‑all or treat‑none strategies (Figure 4C and 4D). 
More importantly, the decision curves revealed 
an advantage of a maximum of 0.6 to 0.7 net ben‑
efit for the DL model with a broad range of thresh‑
old probability.

Comparison of the deep learning model with clinical 
and semantic label models  The clinical model and 
the semantic label model were built for compar‑
ison with the DL model. Sex, age on admission, 

Scorefinal = α1 × ScoreResNet‑50 + α2 × ScoreInception‑v3;

α1 = AUCResNet‑50 / (AUCResNet‑50 + AUCInception‑v3), 
and α2 = 1.000–α1;

Here, AUCResNet‑50 and AUCInception‑v3 represent 
the area under the receiver operating charac‑
teristic curve (AUC) values of ResNet‑50 and 
Inception‑v3, respectively.

The DL network is very complex and its deci‑
sions are not intuitive with regard to interpreta‑
tion. To further explain the prediction process 
of the DL network, we adopted a visualization 
method, that is, the locally interpretable model
‑agnostic explanations (LIME) technique, to de‑
termine the important areas of features in the in‑
put images.30 Red areas on the LIME map had 
greater importance for classification decisions, 
while blue areas were less important.

Statistical analysis  The numerical variables were 
expressed as medians with interquartile ranges. 
Categorical variables were expressed as frequen‑
cies with percentages. The variables clinically as‑
sociated with fluid overload were considered for 
establishing the clinical model and the semantic 
label model (a detailed list of variables is shown 
in Supplementary material, Tables S1 and S2). 
As shown in Figure 2, the quadratic support vec‑
tor machine (SVM) method was used for further 
modeling and testing. Similarly, the average score 
calculated from 5 SVM models was regarded as 
the final prediction output. The performances of 
all models were presented with the receiver op‑
erating characteristic (ROC) curve, sensitivity, 
specificity, and accuracy. We set the cutoff value 

TABLE 1  Baseline characteristics of the study patients

Characteristics MIMIC‑CXR 
dataset (n = 67)

External test 
dataset (n = 38)

Sex Male 38 (56.7) 24 (63.2)

Female 29 (43.4) 14 (36.8)

Admission age, y ≤30 5 (7.5) 0

>30 and ≤60 28 (41.8) 18 (47.4)

>60 34 (50.7) 20 (52.6)

Race or ethnicity White 43 (64.2) 0

Black 4 (6) 0

Hispanic 1 (1.5) 0

Other 19 (28.4) 38 (100)

Admission weight, kg 80 (71.1–95) 59 (53–70)

Comorbidities Congestive heart 
failure

12 (17.9) 7 (18.4)

Chronic pulmonary 
disease

25 (37.3) 1 (2.6)

Chronic renal 
disease

3 (4.5) 4 (10.5)

Length of stay, d Hospital 19.11 
(7.27–29.77)

13.85 
(6.78–26.58)

ICU 9.75 (4.94–15.72) 7.94 (6.35–12.47)

Data are presented as medians (interquartile ranges) or numbers (percentages).

Abbreviations: see Figure 1
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of AUCs is presented in Supplementary mate‑
rial, Table S3.

Visualization of the deep learning model  To better 
understand the predictive principle of the DL 
network, we adopted the image interpretabili‑
ty technique to produce a smooth heatmap of 
the important areas by calculating the impor‑
tance of rectangular features and upsampling 
the resulting map. Figure 5 shows the simplified 
heat map of the DL model, as well as the corre‑
sponding prediction score and semantic labels. 
There may be several unreliable important ar‑
eas on the heat map that interfered with the fi‑
nal DL score. However, the heat map still main‑
ly focused on the lung and heart fields. Similar‑
ly, when clinicians read CXR images to evaluate 
the fluid overload status, they also focus on ra‑
diographic features of the lung and heart fields. 
As shown in Figure 5, the patients with lung ede‑
ma or pleural effusion are often more likely to 

comorbidities (congestive heart failure, chronic 
pulmonary disease, and chronic renal disease), 
FB, CVP, and physical examination results (bilat‑
eral lung crackles / wheeze and general or lower 
extremity edema) were included as covariates in 
the clinical model. Three radiographic features 
(cardiomegaly, lung edema, and pleural effusion) 
related to fluid overload were incorporated into 
the semantic model. Moreover, the combined 
model trained by both clinical and semantic fac‑
tors involved variables statistically significant in 
the univariable analysis when modeling, which 
are indicated in bold in Supplementary materi‑
al, Tables S1 and S2.

As shown in Table 3 and Figure 3, the absolute 
values of AUC in the DL models were signifi‑
cantly higher than those in the clinical mod‑
els for predicting the ELWI and the GEDI sta‑
tus. A similar improvement over the semantic 
model and the combined model was also ob‑
served in the 2 datasets. A detailed comparison 

TABLE 2  Baseline characteristics of the study points

Characteristics MIMIC‑CXR dataset 
(n = 295)

External test dataset 
(n = 63)

Fluid balance, ml/kg 69.27 (20.97–137.03) 45.53 (5.76–78.40)

SOFA score 7 (5–10) 10 (7–12)

CVP, mm Hg 13 (9–16) 12 (8–15)

Physical examination results Bilateral lung 
crackles / wheezing

106 (35.9) 42 (66.7)

General / lower extremity edema 199 (67.5) 17 (27)

Vital signs Heart rate, bpm 95.51 (82.06–106.07) 113 (97–136)

Mean blood pressure, mm Hg 79.36 (72.19–89.13) 88 (80–100)

Respiratory rate, breaths/min 22.16 (19.02–25.38) 25 (20–30)

SpO2, % 97.58 (96.05–98.84) 98 (96–100)

Glucose, mg/dl 130.07 (115.91–150.09) 167.4 (136.8–234.0)

PiCCO monitoring parameters CO, l/min 6.53 (5.38–8.20) 5.54 (4.12–7.3)

CI, l/min/m2 3.48 (2.94–4.20) 3.13 (2.46–4.18)

SVRI, dynes s cm‑5/m2 1637.5 (1240.38–2001) 2021 (1531–2654)

ELWI, ml/kg 10.33 (8.4–15.67) 11.9 (9.9–15.5)

Normal ELWI (≤10 ml/kg) 139 (47.1) 17 (27)

Elevated ELWI (>10 ml/kg) 156 (52.9) 46 (73)

GEDI, ml/m2 762.33 (607.67–981.78) 775 (653–903)

Normal GEDI (≤700 ml/m2) 116 (39.3) 20 (31.7)

Elevated GEDI (>700 ml/m2) 179 (60.7) 43 (68.3)

CXR labels (Uncertain‑Zeros)a Cardiomegaly 59 (20) 19 (30.2)

Lung edema 70 (23.7) 26 (41.3)

Pleural effusion 135 (45.8) 5 (7.9)

CXR labels (Uncertain‑Ones)a Cardiomegaly 74 (25.1) –

Lung edema 91 (30.8) –

Pleural effusion 142 (48.1) –

Data are presented as medians (interquartile ranges) or numbers (percentages).

a  CXR labels in the MIMIC‑CXR dataset were assigned by CheXpert with binary mapping to 0 or 1 (Uncertain‑Zeros 
model and Uncertain‑Ones model).

SI conversion factors: to convert glucose to mmol/l, multiply by 0.0555.

Abbreviations: CI, cardiac index; CO, cardiac output; SOFA, Sequential Organ Failure Assessment; SVRI, systemic 
vascular resistance index; others, see figures 1 and 2
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fluid overload has become a primary component of 
the management of critically ill patients. As a sub‑
stitute for pulmonary artery catheterization, with 
accurate assessment of the constant and dynam‑
ic hemodynamic statuses, PiCCO monitoring has 
been used extensively in the management of crit‑
ically ill patients.34 Furthermore, the parameters 
obtained from the PiCCO system, especially ELWI 
and GEDI, are considered effective and precise for 
quantitative evaluation of the fluid status of crit‑
ically ill patients.7,33 ELWI is a marker reflecting 
the volume of water accumulated in the lungs out‑
side the pulmonary vascular system, correspond‑
ing to the sum of interstitial, intracellular, alveo‑
lar, and lymphatic fluid, not including pleural ef‑
fusion.7,33 ELWI, assessed using transpulmonary 
thermodilution technology, was shown to be close‑
ly associated with the gold standard gravimetric 
measurement in experimental animal studies.35-37 

have fluid overload. However, the results of our 
study showed that the performance of the DL 
model was superior to that of the cardiopulmo‑
nary semantic features identified on CXR imag‑
es for predicting the fluid overload status, which 
was attributed to better discrimination of image 
details by the DL network.

Discussion  Fluid overload is an almost univer‑
sal finding in critically ill patients due to the em‑
phasis on the importance of early fluid resuscita‑
tion and the difficulty for most clinicians in ac‑
curately controlling the fluid intake to meet only 
the actual demand.3,6,32 Moreover, recent stud‑
ies have highlighted the adverse outcomes of flu‑
id overload, while a restrictive fluid strategy has 
been shown to significantly reduce the duration 
of ventilation and short‑term mortality in critical‑
ly ill patients.3-6,33 Therefore, early recognition of 

TABLE 3  Predictive performance of various models for identifying the fluid overload status in the primary and test cohorts

Models Cohorts ELWI GEDI

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Clinical model Primary 0.844 
(0.665–
0.941)

0.519 
(0.324–
0.708)

0.695 
(0.560–
0.805)

0.716 
(0.579–
0.854)

0.861 
(0.697–
0.948)

0.652 
(0.428–
0.828)

0.780 
(0.650–
0.873)

0.871 
(0.783–
0.959)

Test 0.587 
(0.433–
0.727)

0.294 
(0.114–
0.560)

0.508 
(0.380–
0.635)

0.583 
(0.407–
0.759)

0.651 
(0.490–
0.786)

0.250 
(0.096–
0.494)

0.524 
(0.395–
0.650)

0.515 
(0.368–
0.663)

Semantic label 
model 
(Uncertain
‑Zeros)a

Primary 0.656 
(0.468–
0.808)

0.370 
(0.201–
0.575)

0.525 
(0.392–
0.655)

0.532 
(0.398–
0.664)

0.889 
(0.730–
0.964)

0.217 
(0.083–
0.442)

0.627 
(0.491–
0.747)

0.713 
(0.581–
0.823)

Test 0.804 
(0.656–
0.901)

0 (0–0.229) 0.587 
(0.456–
0.708)

0.512 
(0.383–
0.640)

0.977 
(0.862–
0.999)

0.050 
(0.003–
0.269)

0.683 
(0.552–
0.791)

0.552 
(0.421–
0.677)

Semantic label 
model 
(Uncertain
‑Ones)a

Primary 0.563 
(0.379–
0.732)

0.630 
(0.425–
0.799)

0.593 
(0.458–
0.717)

0.556 
(0.420–
0.685)

0.889 
(0.730–
0.964)

0.217 
(0.083–
0.442)

0.627 
(0.491–
0.747)

0.658 
(0.523–
0.777)

Test 0.674 
(0.519–
0.800)

0.588 
(0.335–
0.806)

0.651 
(0.520–
0.764)

0.672 
(0.542–
0.785)

0.977 
(0.862–
0.999)

0.050 
(0.003–
0.269)

0.683 
(0.552–
0.791)

0.515 
(0.385–
0.642)

Clinical 
+ semantic 
label model 
(Uncertain
‑Zeros)a

Primary 0.625 
(0.438–
0.783)

0.778 
(0.573–
0.906)

0.695 
(0.560–
0.805)

0.709 
(0.577–
0.820)

0.750 
(0.575–
0.873)

0.565 
(0.349–
0.761)

0.678 
(0.542–
0.790)

0.810 
(0.687–
0.900)

Test 0.435 
(0.293–
0.588)

0.353 
(0.153–
0.614)

0.413 
(0.292–
0.544)

0.682 
(0.552–
0.793)

0.721 
(0.561–
0.842)

0.300 
(0.128–
0.543)

0.587 
(0.456–
0.708)

0.554 
(0.423–
0.679)

Clinical 
+ semantic 
label model 
(Uncertain
‑Ones)a

Primary 0.719 
(0.530–
0.856)

0.667 
(0.460–
0.828)

0.695 
(0.560–
0.805)

0.675 
(0.541–
0.792)

0.750 
(0.575–
0.873)

0.565 
(0.349–
0.761)

0.678 
(0.542–
0.790)

0.792 
(0.667–
0.887)

Test 0.500 
(0.351–
0.649)

0.529 
(0.285–
0.761)

0.508 
(0.380–
0.635)

0.505 
(0.376–
0.634)

0.721 
(0.561–
0.842)

0.300 
(0.128–
0.543)

0.587 
(0.456–
0.708)

0.552 
(0.421–
0.677)

DL model Primary 0.842 
(0.681–
0.934)

0.833 
(0.646–
0.937)

0.838 
(0.725–
0.913)

0.896 
(0.819–
0.972)

0.833 
(0.680–
0.925)

0.692 
(0.481–
0.849)

0.779 
(0.659–
0.867)

0.814 
(0.699–
0.930)

Test 0.796 
(0.652–
0.893)

0.647 
(0.386–
0.847)

0.758 
(0.634–
0.851)

0.718 
(0.594–
0.822)

0.644 
(0.487–
0.777)

0.619 
(0.387–
0.810)

0.636 
(0.508–
0.749)

0.649 
(0.510–
0.787)

The results are expressed as ratios with 95% CIs.

a  CXR labels in the MIMIC‑CXR dataset were assigned by CheXpert with binary mapping to 0 or 1 (Uncertain‑Zeros model and Uncertain‑Ones 
model).

Abbreviations: AUC, area under the receiver operating characteristic curve; others, see Figure 1
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Figure 3�   
Comparison of ROC 
curves between different 
models for predicting 
the ELWI and GEDI 
statuses; A – ELWI in 
the primary cohort; 
B – ELWI in the test 
cohort; C – GEDI in 
the primary cohort; 
D – GEDI in the test 
cohort 
Abbreviations: ROC, 
receiver operating 
characteristic; U, uncertain; 
others, see figure 1
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Figure 4�   
Predictive performance of 
the deep learning (DL) 
models; 
A, B – cumulative 
frequency curves of 
the DL scores for 
predicting the (A) ELWI 
and (B) GEDI status in 
the 2 datasets. Dotted 
lines represent the DL 
scores corresponding to 
the median of 
the cumulative frequency. 
C, D – decision curves of 
the DL models for 
predicting the (C) ELWI 
and (D) GEDI status 
Abbreviations: see 
figure 1

100

0
0

DL score
Cu

m
ul

at
iv

e 
fre

qu
en

cy
, %

0.2 0.4 0.6 0.8 1

20

40

50

60

80

0

0
Threshold probability

N
et

 b
en

ef
it

0.2

0.2

0.3

0.3

0.5

0.5

0.7

0.7

0.90.1

0.1

0.4

0.4

0.6

0.6

0.8 1

0

0
Threshold probability

N
et

 b
en

ef
it

0.2

0.2

0.3

0.3

0.5

0.5

0.7

0.7

0.9

DL model for GEDI
Treat-none
Treat-all

DL model for ELWI
Treat-none
Treat-all

0.1

0.1

0.4

0.4

0.6

0.6

0.8 1

100

0
0

DL score

Cu
m

ul
at

iv
e 

fre
qu

en
cy

, %

0.2 0.4 0.6 0.8 1

20

40

50

60

80

Normal ELWI in the validation dataset
Elevated ELWI in the validation dataset
Normal ELWI in the test dataset
Elevated ELWI in the test dataset

Normal GEDI in the validation dataset
Elevated GEDI in the validation dataset
Normal GEDI in the test dataset
Elevated GEDI in the test dataset

a

D

C

B



POLISH ARCHIVES OF INTERNAL MEDICINE  2023; 133 (2)10

With the rapid development of ultrasound and 
computed tomography technologies, the clin‑
ical role of CXR has been gradually diminish‑
ing. However, as most ICU patients are at high 
risk of adverse events during transportation, 
the preliminary information that can be provid‑
ed by portable CXR is still important to ICU cli‑
nicians. Most studies on the correlation between 
ELWI and CXR were performed in the 20th cen‑
tury. Early reports confirmed a positive correla‑
tion between the CXR score and the ELWI val‑
ue using the double indicator dilution technique 
in critically ill patients.11-13,42 Similarly, recent 
studies have shown that a standardized CXR 
score can improve diagnostic accuracy for pre‑
dicting the severity of pulmonary edema repre‑
sented by ELWI using the new transpulmonary 
thermodilution method.17,18 Nevertheless, sev‑
eral studies have shown the opposite, name‑
ly, that CXR does not correlate with ELWI or 
GEDI assessments of lung water and volume 
status.15,16 The correlations between CXR find‑
ings and ELWI values drawn from prior stud‑
ies were inconsistent, with correlation coeffi‑
cients ranging from 0.35 to 0.83.11-13,18 Similar‑
ly, the predictive performance of the semantic 
label model in our study was also not satisfac‑
tory. These discrepancies may be due to the fact 
that the CXR score and CXR label methods fo‑
cus mainly on the low‑order visual features of 
CXR images via subjective judgments of radiol‑
ogists, which can lead to over- or underestima‑
tion of the ELWI and GEDI values.

GEDI is used to assess the sum of intracardiac 
blood volume using transpulmonary thermodi‑
lution technology.7 Similarly to ELWI, GEDI has 
been shown to be a reliable indicator of cardiac 
preload and fluid responsiveness in animal mod‑
els.38,39 Recent studies have confirmed that ELWI- 
and GEDI‑guided fluid management can improve 
clinical outcomes in critically ill patients, including 
lower cumulative FB, improved short‑term mor‑
tality, and shorter duration of mechanical ventila‑
tion and ICU stay.7,33,40,41 On the basis of the clin‑
ical decision tree, elevated ELWI (>10 ml/kg) and 
GEDI (>700 ml/m2) values indicate an increase in 
the risk of further fluid overload, and fluid removal 
should be initiated at the post‑shock phase. How‑
ever, limitations of the transpulmonary thermo‑
dilution technology may lead to unreliable mea‑
surements of ELWI and GEDI in the cases of pul‑
monary vascular occlusion, lung resection, hetero‑
geneous lung injury, and application of positive 
end-expiratory pressure.7,33 We eliminated these 
interferences as much as possible in this study by 
excluding patients with related comorbidities. In 
addition, the difficulty of repeated invasive pro‑
cedures, complications during and after catheter‑
ization, and high testing costs may limit the fea‑
sibility of PiCCO monitoring in the clinical set‑
ting, especially in developing countries / territo‑
ries. Therefore, we hypothesized that a low‑cost 
DL method combined with repeatable and non‑
invasive CXR instead of routine PiCCO monitor‑
ing may be useful for predicting the fluid overload 
status in critically ill patients.

Figure 5�  Heatmap of the deep learning model along with the corresponding prediction score and the semantic labels. Chest X‑ray images of (A) 
normal ELWI, (B) elevated ELWI, (C) normal GEDI, and (D) elevated GEDI come from the external test dataset. 
Abbreviations: see figure 1

Normal ELWI

CXR
image

Semantic
labels

Heatmap

Prediction
score 0.313

Cardiomegaly – 0
Lung edema – 0
Pleural effusion – 0

Cardiomegaly – 0
Lung edema – 1
Pleural effusion – 0

Cardiomegaly – 0
Lung edema – 0
Pleural effusion – 0

Cardiomegaly – 0
Lung edema – 0
Pleural effusion – 1

0.96 0.249 0.957

0

1

Elevated ELWI Normal GEDI Elevated GEDI

a DCB



ORIGINAL ARTICLE  Fluid overload status on chest X‑ray imaging 11

shown to be effective methods of fluid overload 
quantification, were not included in the compar‑
ative analysis. Therefore, further studies are war‑
ranted to supplement the results of our study.

Conclusions  In this study, a DL model based on 
CXR images was established to predict the flu‑
id overload status in critically ill patients. Val‑
idated by an independent external test dataset, 
the DL model showed a relatively strong general‑
ization performance, which was better than that 
of the clinical and semantic label models. As CXR 
is routinely used in the ICU, a simple, fast, low
‑cost, and noninvasive DL model could constitute 
an effective supplementary tool for identifying 
the fluid overload status. Such a model would be 
particularly beneficial in the settings where in‑
vasive hemodynamic monitoring is unavailable.

Supplementary material

Supplementary material is available at www.mp.pl/paim.
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