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This acute exacerbation often causes death of IPF 
patients. IPF bears the histology of usual inter‑
stitial pneumonia (UIP) which is characterized by 
bronchiolization of distal airspaces, honeycomb‑
ing, fibroblastic foci, and abnormal epithelial hy‑
perplasia.3,4 Diagnosis of IPF is based on identi‑
fication of the UIP pattern on high‑resolution 
computed tomography scan and / or lung biopsy 
and exclusion of other ILD conditions. The risk 
factors increasing the odds of IPF development 
include smoking, exposure to metallic or wood 
dust, gastroesophageal reflux, viral infections, 
and traits that are genetically inherited. Currently, 

Idiopathic pulmonary fibrosis  Idiopathic pul‑
monary fibrosis (IPF) is a progressive and life
‑threatening interstitial lung disease (ILD). 
The adjusted incidence and prevalence of IPF are 
estimated to be in the range of 0.09 to 1.3 and 
0.33 to 4.51 per 10 000 people, respectively.1 IPF 
is associated with cough, dyspnea, and markedly 
impaired quality of life. It has a familial or sporad‑
ic onset with a poor prognosis, and death usually 
occurs within 2–5 years following the diagnosis 
due to secondary respiratory failure.2 Some IPF 
patients may experience acute deterioration of 
respiratory function over a short period of time. 
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Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and life‑threatening interstitial lung disease of familial 
or sporadic onset. The incidence and prevalence of IPF range from 0.09 to 1.3 and from 0.33 to 4.51 per 
10 000 people, respectively. IPF has a poor prognosis, and death usually occurs within 2 to 5 years follow‑
ing the diagnosis due to secondary respiratory failure. Currently, there are 2 drugs available to treat IPF, 
pirfenidone and nintedanib. Both only slow the disease progression and, in addition, have unfavorable safety 
profiles. IPF bears the histology of usual interstitial pneumonia, which is characterized by bronchioliza‑
tion of distal airspaces, honeycombing, fibroblastic foci, and abnormal epithelial hyperplasia. In the last 
years, alterations in metabolic pathways, in particular those associated with fatty acid (FA) metabolism 
have been linked with the pathogenesis of lung fibrosis. Changes in FA profiles have been reported in 
lung tissue, plasma, and bronchoalveolar lavage fluid of IPF patients, and have been found to correlate 
with the disease progression and outcome. In addition, they have been associated with the development 
of a profibrotic phenotype of epithelial cells, macrophages, and fibroblasts / myofibroblasts contributing 
to their (trans)differentiation and production of the disease‑relevant mediators. Furthermore, strategies 
focusing on the correction of FA profiles in experimental models of lung fibrosis brought advances in 
understanding tissue scarring processes and contributed to the transition of new molecules into clinical 
development. This review highlights the role of FAs and their metabolites in IPF and provides evidence 
for therapeutic potential of lipidome manipulations in the treatment of this disease.
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fatty acids (SCFAs) with the chain of 5 or few‑
er carbons (eg, butyric acid), medium‑chain fat‑
ty acids (MCFAs) with the carbon tail of 6 to 12 
carbons (eg, caprylic acid), long‑chain fatty acids 
with the carbon chain of 13 to 21 carbons (eg, pal‑
mitic acid, stearic acid, or arachidic acid), and very 
long chain fatty acids with the carbon tail of 22 
or more carbons (eg, lignoceric acid).16

FAs serve as an energy source and building 
blocks of cell membranes. In addition, FA‑derived 
lipid mediators regulate a plethora of biological 
processes including signal transduction, cell cycle 
regulation, apoptosis, and cell differentiation.16 
FAs can either be produced in the cytoplasm from 
the tricarboxylic acid cycle intermediate, citrate, 
or taken up from the extracellular space via the FA 
transporter, CD36 protein.17 Once entering the in‑
tracellular pool, FAs can be esterified with glycer‑
ol or sterol backbones and stored in the form of 
triglycerides (TGs) in lipid droplets or utilized for 
energy production in β‑oxidation. In β‑oxidation, 
FAs attached to coenzyme A (CoA) are transport‑
ed via carnitine shuttle into the mitochondria, 
where their intermediates are oxidized to gener‑
ate adenosine triphosphate.

Among biologically active fatty acids, AA and 
its metabolites are the best characterized ones. 
AA is a 20 carbon‑chain FA with 4 methylene
‑interrupted cis double bonds and a biochemical 
nomenclature of all‑cis‑5,8,11,14‑eicosatetraenoic 
acid. AA can be either obtained from food or syn‑
thetized in vivo from linoleic acid. AA incorpo‑
rated into cellular phospholipids ensures flexibil‑
ity, fluidity, and permeability of biological mem‑
branes and thus influences the function of mem‑
brane proteins and plays a fundamental role in 
the maintenance of cell and organelle integrity. 
Following release from biological membranes by 
phospholipase A2, AA is rapidly converted into ac‑
tive metabolites known as prostaglandins (PGs), 
prostacyclins, thromboxanes (TXs), leukotrienes 
(LTs), lipoxins, and epoxyeicosatrienoic acids 
(EETs). The physiological activities of these me‑
tabolites are widespread and diverse. They are in‑
volved in the regulation of the inflammatory re‑
sponses, pain perception, hemostasis, and cell 
proliferation. In addition, PGs and prostacyclins 
are known as strong vasodilators, TXs as potent 
vasoconstrictors, LTs as bronchoconstrictors, and 
lipoxins as effective anti‑inflammatory and pro‑
resolving agents.18,19

Altered profiles of fatty acids, their derivatives, and 
metabolites in lung fibrosis  Changes in lipidome 
have been reported in lung tissue, plasma / se‑
rum, bronchoalveolar lavage fluid (BALF) of IPF 
patients, and preclinical models of pulmonary fi‑
brosis.20 In the lungs of IPF patients, elevated lev‑
els of caproate, caprylate, myristate, and palmi‑
toleate and decreased levels of stearic acid, carni‑
tine, and medium‑chain acyl‑carnitines have been 
determined.13,21,22 These changes imply a decrease 
in β‑oxidation in fibrotic lungs. Indeed, reduced 
β‑oxidation was described in alveolar epithelial 

there are 2 antifibrotic drugs that have been ap‑
proved for the treatment of IPF, pirfenidone and 
nintedanib.5 Both nintedanib, a tyrosine kinase 
inhibitor, which blocks the effects of platelet
‑derived growth factor (PDGF), vascular endo‑
thelial growth factor, and fibroblast growth fac‑
tor,6 and pirfenidone, whose mechanism of ac‑
tion is unclear,7 were shown to decrease IPF pro‑
gression, as measured by longitudinal changes 
of forced vital capacity (FVC) over a period of 52 
weeks. Although the approval of pirfenidone and 
nintedanib was a huge step forward in the treat‑
ment of IPF patients, these medications only slow 
the disease progression and do not markedly im‑
prove the quality of life. In addition, they have 
numerous side effects, which limit their clinical 
use.8-11 Thus, there is a high unmet clinical need 
for new IPF therapeutics.

 Idiopathic pulmonary fibrosis pathogenesis  Despite 
decades of research unraveling complexity of the 
mechanisms underlying IPF pathogenesis, the eti‑
ology of the disease remains elusive. The current 
view on IPF pathobiology brings genetically un‑
stable / aging alveolar epithelial cells into focus. 
Following multiple injuries, these cells undergo ei‑
ther apoptosis or activation ultimately leading to 
mesenchymal cell proliferation and deposition of 
extracellular matrix (ECM) proteins in the lung.12 
These processes are accompanied by accumula‑
tion of multiple types of inflammatory cells, in‑
cluding monocyte‑derived macrophages, dendrit‑
ic cells, B cells, and T cells, in the fibrotic lung tis‑
sue, and finally formation of an irreversible scar. 
Thus, identification of the signaling pathways 
driving miscommunication between multiple cell 
types and the role of ECM in these processes, all 
in the context of genetic mutations and epigen‑
etic alterations, is central to unraveling the long
‑lasting mystery of IPF. In the last years, changes 
in metabolic pathways, in particular those associ‑
ated with lipid metabolism, have been linked with 
the pathogenesis of IPF.13-15 In addition, strate‑
gies focusing on the correction of fatty acid (FA) 
profiles brought advances in understanding tis‑
sue scarring and contributed to the transition of 
new molecules into clinical development. This re‑
view highlights the role of FAs and their metabo‑
lites in IPF and provides evidence for therapeutic 
potential of lipidome manipulations in the treat‑
ment of this disease.

Fatty acid biology  FAs are a large group of mol‑
ecules with a basic structure that contains a car‑
boxylic acid group attached to a chain of carbon 
and hydrogen atoms. FAs can be either saturat‑
ed or unsaturated. Saturated FAs have only sin‑
gle bonds between carbons (eg, stearic acid, pal‑
mitic acid, arachidic acid), whereas unsaturat‑
ed FAs contain 1 or more double bonds between 
carbons (eg, linoleic acid, oleic acid, arachidon‑
ic acid [AA]), and can be either cis or trans iso‑
mers. Based on the length of the carbon chain, 
FAs can be divided into 4 groups: short‑chain 
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diffusion lung capacity for carbon monoxide and 
6‑minute walk distance. In addition, IPF patients 
with high PGF2α levels had increased risk of mor‑
tality, which strongly suggested a detrimental 
role of this eicosanoid in the disease progres‑
sion.30 Finally, areas of increased expression of 
15‑prostaglandin dehydrogenase, an enzyme re‑
sponsible for the inactivation of PGs, have been 
reported in IPF‑affected lungs31 (Figure 1). Our un‑
published data demonstrated massive accumu‑
lation of lipids / lipid‑loaded cells in semifibrot‑
ic regions of IPF‑affected lungs, suggesting con‑
tribution of these agents to tissue scarring pro‑
cesses (Figure 2).

Lipid perturbations, with increased FA, phos‑
phatidylcholine, and phosphatidylethanolamine 
levels were also reported in the lungs of bleomy‑
cin- or silica‑treated mice. Weckerle et al32 de‑
scribed upregulation of FA acyl‑carnitines and 
downregulation of triacylglycerols, as well as en‑
hanced β‑oxidation in the lungs of bleomycin
‑treated animals irrespective of their age. These 
changes seem to reflect high‑energy demand of 
the fibrotic tissue associated with increased cell 
proliferation, production of ECM proteins, and 
inflammation. In silicosis, PGD2 and TXA2 were 
found to be significantly upregulated.33

Mechanistic insights into the role of lipid mediators 
in lung fibrosis  Fatty acids  Lipids comprise di‑
verse classes of molecules, which play critical 
roles in the lungs as structural components, en‑
ergy storage, pulmonary surfactant constituents, 
and signaling mediators.34 Their potential role 
in IPF pathogenesis remains, however, unclear. 

cells of IPF patients. Interestingly, an opposite 
phenomenon was reported in alveolar macro‑
phages, suggesting that these cells undergo met‑
abolic reprogramming during fibrogenesis, and 
they support maladaptive remodeling of the lung 
tissue using FAs as an energy source.23 In line with 
these observations, changes in the FA composi‑
tion of surfactants in IPF patients were described, 
partially explaining impaired gas exchange in 
these individuals.24 In the serum of IPF patients, 
cholesteryl esters were the most markedly upreg‑
ulated metabolites.25 Furthermore, higher levels 
of TGs and phosphatidylcholines were determined 
in the IPF progressors, as compared with stable 
IPF patients. These findings are supported by pre‑
vious reports highlighting increased plasma lev‑
els of glycerophospholipids, glycerolipids, sterol 
lipids, and sphingolipids in IPF patients in com‑
parison with controls.20 Building on these obser‑
vations, Lyu et al26 identified 5 FA metabolism
‑related genes (γ‑glutamyltransferase 5, acyl
‑CoA oxidase, leukotriene‑B4 Ω‑hydroxylase, 
3‑hydroxyacyl‑CoA dehydratase 4, and ornithine 
decarboxylase) associated with IPF survival. Ac‑
cordingly, the FA metabolism‑related gene ex‑
pression signature was proposed as a biomarker 
for predicting IPF clinical outcome.26 Moreover, 
an imbalance in the production of AA metabo‑
lites has been described in IPF, with increased 
levels of LTC4, LTB4, and PGE2, and reduced lev‑
els of 11,12‑EET in the lung tissue,27,28 decreased 
amounts of PGE2 in BALF,29 and elevated levels 
of PGF2α in the plasma. The increased levels of 
PGF2α in the plasma of IPF patients negatively 
correlated with forced expiratory volume, FVC, 

Figure 1�  Fatty acids, their derivatives, and metabolites in the lung tissue and biological fluids of IPF patients 
Abbreviations: BALF, bronchoalveolar lavage fluid; EET, epoxyeicosatrienoic acid; IPF, idiopathic pulmonary fibrosis;  
LT, leukotriene; MC, medium‑chain; PG, prostaglandin
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reduces TGF‑β1–triggered expression of profi‑
brotic factors in the fibroblasts and linked these 
changes with stabilization of the mitochondrial 
function. Hence, application of butyrate attenu‑
ated bleomycin‑induced lung fibrosis in mice and 
rats.45 Finally, FAs were found to stimulate mac‑
rophage polarization into M2 phenotype, which 
is known to propagate profibrotic processes.36

These findings prompt repurposing / develop‑
ment of agents regulating lipidome profiles for 
the treatment of pulmonary fibrosis. In this re‑
spect, PBI‑4050, a synthetic analogue of a MCFA 
that displays agonist and antagonist activity to‑
ward the G‑protein coupled receptors GPR40 and 
GPR84, respectively, attenuated lung fibrosis in 
the mouse bleomycin model.46 This agent was al‑
ready evaluated in a 12‑week, open‑label, phase 2 
clinical study of IPF and demonstrated no safety 
concerns when used alone or in combination with 
nintedanib or pirfenidone. Furthermore, the sta‑
bility of FVC between baseline and week 12 was 
encouraging for PBI‑4050 alone and in combina‑
tion with nintedanib.47 Metformin, an activator 
of adenosine monophosphate–activated protein 
kinase α and an inhibitor of lipid synthesis, accel‑
erated resolution of lung fibrosis upon bleomy‑
cin administration in mice,48,49 and fenofibrate 
and rosiglitazone, 2 drugs known to decrease cir‑
culating lipid levels, reduced bleomycin‑induced 
lung fibrosis in rats.50 Valproic acid, known from 
the treatment of epilepsy and mental disorders, 
reduced EMT and pulmonary fibrosis in the mu‑
rine bleomycin model,51 and α‑lipoic acid, a SCFA 
approved in Germany for the treatment of dia‑
betic neuropathy, reduced oxidative stress and 
collagen levels in the bleomycin and silica mod‑
els of lung fibrosis, in rats and mice, respective‑
ly. In the silica model, α‑lipoic acid also reduced 
hyperglycemia.52 Finally, treatment of rats with 
methyl palmitate attenuated silica‑induced lung 
inflammation and fibrosis. Mechanistically, it re‑
duced lactate dehydrogenase and glutathione ac‑
tivity, diminished overproduction of pulmonary 
nitrite / nitrate and malondialdehyde content, 
and increased superoxide dismutase activity in 

Substantial alterations in the metabolism of FAs 
have been reported in IPF patients. These chang‑
es have been associated with the development of 
a profibrotic phenotype of alveolar epithelial cells, 
macrophages, and fibroblasts / myofibroblasts 
contributing to fibrogenesis in multiple ways.35,36 
Firstly, accumulation of TGs in the form of lipid 
droplets in alveolar epithelial cells was found to 
induce endoplasmic reticulum (ER) stress.37 Ac‑
cordingly, exposure of alveolar epithelial cells to 
palmitic acid triggered ER stress and cell death. 
These effects were diminished following genetic 
ablation or pharmacologic inhibition of CD36. 
In line with these findings, increased ER stress 
and aggravated lung fibrosis were observed in 
bleomycin‑exposed mice, fed a high‑fat diet rich 
in palmitic acid.22 Interestingly, ER stress was not 
only described in alveolar epithelium of mice but 
also in humans with IPF, and it was associated 
with maladaptive remodeling of the lung tissue.38 
Secondly, high rates of lipid peroxidation, a pro‑
cess which mainly affects polyunsaturated fatty 
acids (PUFAs), were reported to produce oxida‑
tive stress, cell damage, and inflammation in ex‑
perimental lung fibrosis.39,40 Furthermore, elevat‑
ed levels of lipid peroxides and their protein ad‑
ducts were measured in the lung tissue and BALF 
of IPF patients.41 Consequently, restoration of lip‑
id peroxide balance and suppression of oxidative 
stress, for example, by overexpression of carni‑
tine palmityl transferase 1A, alleviated pulmo‑
nary fibrosis in the rat bleomycin model.42 Third‑
ly, Sunaga et al43 reported that exposure of alveo‑
lar epithelial cells to palmitic acid induced trans‑
forming growth factor (TGF)-β1 expression and 
may lead to apoptosis of these cells. Interesting‑
ly, opposite results were reported for stearic acid 
and butyrate. Kim et al21 demonstrated that stea‑
ric acid decreases TGF‑β1–induced α‑smooth mus‑
cle actin, collagen I expression, and reactive ox‑
ygen species (ROS) production in fibroblasts, in‑
hibits TGF‑β1–triggered epithelial mesenchymal 
transition (EMT) in the epithelial cells, and reduc‑
es hydroxyproline levels in the mouse bleomy‑
cin model. Also, Lee et al44 showed that butyrate 

Figure 2�  Lipids / lipid‑loaded cells in semifibrotic regions in an IPF‑affected lung; A – overlay scan of confocal 
transmitted lasers (670 nm, 540 nm, and 476 nm). Lipids were detected using Sudan IV dye (reddish color indicated by 
arrow heads); B – second harmonic generation (SHG) and autofluorescence (500–700 nm), derived from 2-photon 
excitation at 860 nm. Collagen fibers were detected using SHG (cyan spots). Autofluorescence is depicted in magenta. 
C – overlay of A and B. Arrow heads indicate overlap of lipid staining and autofluorescence.   
Abbreviations: see Figure 1 
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administration of ONO‑1301, a long‑acting pros‑
tacyclin agonist with TX synthase inhibitory ac‑
tivity, to bleomycin‑treated mice.62 Significant al‑
leviation of silica‑induced pulmonary inflamma‑
tion and fibrosis was also observed upon admin‑
istration of ramatroban, a clinical antagonist of 
both PGD2 and TXA2 receptors.33

In contrast with these findings, PGE2 worsened 
pulmonary fibrosis induced by adenoviral over‑
expression of active TGF‑β1 (AdTGF‑β1) in mice, 
and failed to attenuate Streptococcus pneumoniae–
exacerbated lung fibrosis in the same animal mod‑
el.63 In addition, it had poor therapeutic effect 
when administered 2 weeks after instillation of 
bleomycin to mice.64 These observations suggest 
that the role of PGE2 as the pro- and / or antifi‑
brotic mediator depends on the experimental 
model employed, therapeutic window, and a sec‑
ondary hit. In this regard, the bleomycin model 
of lung fibrosis triggers acute lung injury, which 
is followed by a fibrosing‑healing phase, where‑
as AdTGF‑β1–induced fibrosis lacks the phase of 
acute lung injury and thus more closely reflects 
human IPF. Therefore, differences between lung 
fibrosis models and treatment modalities have 
to be carefully evaluated before making general 
conclusions about therapeutic potential of mol‑
ecules that are supposed to enter clinical devel‑
opment programs.

Regarding strategies focusing on the impair‑
ment of LT synthesis, inhibition of LTB4 bio‑
synthesis by histone deacetylase inhibitors, 
such as suberanilohydroxamic acid or its ana‑
logue 4-(dimethylamino)-N-[7-(hydroxyamino)-
7‑oxoheptyl]benzamide diminished lung in‑
flammation and fibrosis following bleomy‑
cin administration.65 Strikingly, treatment of 
bleomycin‑receiving mice with senolytics de‑
creased LT levels and attenuated lung fibrosis, 
thus highlighting LT as a part of a senescence
‑associated secretory phenotype and pointing to‑
ward senescence cells as a source of these eico‑
sanoids.66 These results are in line with previous‑
ly published reports demonstrating that phar‑
macological inhibition of LT activity, either by 
a 5‑lipoxygenase inhibitor, zileuton, or a cys
‑leukotriene receptor antagonist, MK‑571, at‑
tenuates inflammation and fibrosis in the lungs 
of bleomycin‑treated mice. 67 Table 1 summarizes 
studies evaluating FAs / FA metabolites as drug 
candidates in animal models of lung fibrosis.  

Taken together, an accumulating body of ev‑
idence suggests that eicosanoids, next to their 
inflammatory properties, may also control pro‑
fibrotic processes (Figure 3). Hence, modulating 
the eicosanoid levels in the fibrotic lungs may have 
therapeutic potential. However, it requires further 
research focusing on their dynamics and causal 
flows in the ligand‑receptor interaction networks.

Fatty acid metabolites in clinical studies on idiopath-
ic pulmonary fibrosis  The promising results of 
preclinical studies led to the initiation of sever‑
al clinical trials evaluating the safety and efficacy 

the lung tissue. These observations suggest that 
methyl palmitate may counteract the inflamma‑
tory and fibrotic processes by decreasing ROS 
generation in the injured organ.53

Taken together, there is strong preclinical evi‑
dence of therapeutic power of correcting FA pro‑
files in lung fibrosis. Further efforts should focus 
on the role of various FAs in the lung hemosta‑
sis and diseases and translation of basic research 
findings into clinical practice.

Arachidonic acid metabolites  As far as AA metabo‑
lites are concerned, it was demonstrated that LTs 
exert proinflammatory effects and can promote fi‑
broblast migration, proliferation, and the produc‑
tion of ECM,27 whereas PGE2 can support the sur‑
vival of alveolar epithelial cells, reduce fibro‑
blasts proliferation and ECM expression, as well 
as increase the sensitivity of fibroblasts / myofi‑
broblasts to apoptosis.1 In addition, treprosti‑
nil, a synthetic prostacyclin analogue, prevent‑
ed PDGF‑BB– and TGF‑β1–induced human lung 
fibroblast proliferation and deposition of ECM 
proteins.54 These antifibrotic effects were also 
observed following administration of treprostinil 
prodrug (hexadecyl‑treprostinil), in a therapeu‑
tic dosing paradigm, to the lungs of bleomycin
‑treated rats.55 Noteworthy, treprostinil inhala‑
tions are approved in the United States, Argenti‑
na, and Israel for the treatment of World Health 
Organization (WHO) group 1, and in the Unit‑
ed States for WHO group 3 of pulmonary hy‑
pertension (PH).56 The antifibrotic effects were 
also observed for another prostacyclin analogue, 
iloprost, which decreased expression of proin‑
flammatory and profibrotic cytokines (tumor ne‑
crosis factor‑α, interleukin‑6, and TGF‑β1) and 
increased expression of antifibrotic mediators 
(interferon‑γ and CXCL10) in the mouse bleo‑
mycin model.57 Together, these findings impli‑
cate that overproduction of LTs and PGE2 defi‑
ciency promote and sustain lung fibrosis and sug‑
gest that strategies aiming to elevate PGE2 / pros‑
tacyclin levels may offer an attractive therapeutic 
option for IPF. Hence, a synthetic PGE2 analogue 
(16,16‑dimethyl‑PGE2) attenuated bleomycin
‑induced lung fibrosis in mice.58 Similarly, lo‑
cal pulmonary delivery of PGE2 containing li‑
posomes or PGE2 nanostructured lipid carriers 
protected mice against bleomycin‑induced inflam‑
mation, weight loss, fibrosis, and mortality. Of 
note, PGE2 containing liposomes and PGE2 nano‑
structured lipid carriers were delivered during 
the acute phase of lung injury triggered by bleo‑
mycin.59,60 Strategies aiming to inhibit PG or EET 
metabolism by SW03329 (a small-molecule inhib‑
itor of 15-hydroxyprostaglandin dehydrogenase) 
or TPPU (an inhibitor of soluble epoxide hydro‑
lase), respectively, also turned out to have bene‑
ficial effects on lung inflammation and fibrosis in 
the mouse bleomycin model.28,31,61 Likewise, at‑
tenuation of lung fibrosis, with diminished accu‑
mulation of collagen in the affected organ and im‑
proved survival, was observed following repeated 
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of TETON 1 and 2 studies is a change in the abso‑
lute FVC from baseline to week 52. The TETON 
clinical program is the first study evaluating in‑
haled therapy for IPF. This local drug delivery can 
provide a more targeted and efficient drug supply 
option than systemic administration, and thus 
may confer additional benefits with potentially 
fewer adverse effects. Future will show wheth‑
er treprostinil has a chance to enter the clinic.70

While the potential of FAs and their deriva‑
tives in the treatment of IPF only begins to be  
appreciated by internal medicine, other medical 
specialties had already understood their thera‑
peutic power. For instance, SCFA profiles were 
found to characterize disease severity in the pa‑
tients with inflammatory bowel diseases,71 and 
dietary or pure ω/n‑3 PUFAs were shown to ex‑
ert protective effects against cardiovascular dis‑
eases.72-75 Interestingly, many IPF patients suffer 
from comorbidities, such as hypertension, obesi‑
ty, hypercholesterolemia, cardiovascular disease, 
gastroesophageal reflux disease, or diabetes. In 
addition, the presence of comorbidities in IPF 
patients is associated with their worse survival, 
and this is not only observed in naïve patients but 
also in those receiving antifibrotic therapy.76,77 
Based on these findings, it is worth speculating 
that treatment of comorbidities may have a clin‑
ically significant impact on the overall outcome 
that is meaningful for IPF patients. This would 
also apply to the treatment of cardiovascular dis‑
ease with dietary or pure ω/n‑3 PUFAs in patients 
with IPF.72-75 Interestingly, similar interventions 
with dietary ω/n‑3 PUFAs constituting, for exam‑
ple, fish oil were already found to have protective 

of FAs / FA metabolites in IPF. These include: 
a 12‑week, phase 2, single‑arm, open‑label study 
exploring safety, efficacy, and pharmacokinetics of 
oral PBI‑4050 in IPF patients (NCT02538536)47; a 
12‑week, double‑blind, multicenter, trial of in‑
haled iloprost in IPF patients with PH68; and 
a phase 3, double‑blind, multicenter, placebo
‑controlled trial of inhaled treprostinil in patients 
with ILD and associated PH (PH‑ILD) (INCREASE; 
NCT02630316).69 

Daily oral doses of PBI‑4050 alone and in com‑
bination with approved antifibrotics demonstrat‑
ed no safety concerns. Furthermore, the stabili‑
ty of FVC between baseline and week 12 looked 
promising for PBI‑4050 alone and in combina‑
tion with nintedanib.47 Inhaled iloprost was well
‑tolerated by IPF patients but it did not meet 
secondary efficacy end points.68 Pulmonary de‑
livery of treprostinil was associated with a re‑
duction in the N‑terminal pro–B‑type natriuret‑
ic peptide levels, improvement in the 6‑minute 
walk distance, lower risk of clinical worsening, 
and fewer exacerbations of underlying lung dis‑
ease, over the 16‑week treatment period. Strik‑
ingly, these differences were most evident in pa‑
tients with idiopathic interstitial pneumonia, par‑
ticularly IPF, suggesting that inhaled treprostinil 
might be a promising therapy for IPF that war‑
rants further investigation.69 Indeed, the prospec‑
tively designed double‑blind, placebo‑controlled, 
52‑week, TETON 1 and 2 studies (NCT04708782, 
NCT05255991) will evaluate the safety and effi‑
cacy of inhaled treprostinil for treatment of IPF 
alone, irrespective of the antifibrotic therapy and 
the presence of PH. The primary efficacy end point 

TABLE 1  Summary of studies evaluating fatty acids / fatty acid metabolites as drug candidates in animal models of lung fibrosis

Drug candidate Model of lung fibrosis Main findings Outcome Reference

PBI‑4050 Mouse, bleomycin Reduced fibrotic lesion score Favorable 46

Butyrate Rat or mouse, 
bleomycin

Decreased levels of inflammatory mediators and collagen, 
diminished oxidative stress

Favorable 45,86

Valproic acid Mouse, bleomycin Decreased EMT and fibrotic lesion score Favorable 51

α‑Lipoic acid Rat, bleomycin Decreased oxidative stress, collagen levels, and ameliorated 
MMP‑1/TIMP‑1 ratio

Favorable 87

Methyl palmitate Rat, silica Reduced lactate dehydrogenase and glutathione activity, diminished 
overproduction of nitrite / nitrate and malondialdehyde, increased 
SOD activity

Favorable 53

Treprostinil prodrug Rat, bleomycin Decreased collagen content and fibrotic lesion score Favorable 55

PGE2 Mouse, bleomycin Decreased inflammation, fibrosis, and mortality Favorable 58-60

PGE2 Mouse, AdTGF‑β1 Increased fibrosis and expression of collagen and α‑SMA in alveolar 
type II cells isolated from affected mice

Harmful 63

PGE2 Mouse, AdTGF‑β1 
+ S. pneumoniae

No change in comparison to animals treated with AdTGF‑β1 only 
(see above)

No change 63

PGE2 Mouse, bleomycin No change in fibrotic lesion score and collagen content No change 64

ONO‑1301 Mouse, bleomycin Decreased inflammation and fibrosis, improved survival Favorable 62

Iloprost Mouse, bleomycin Decreased expression of proinflammatory and profibrotic cytokines, 
increased expression of antifibrotic mediators

Favorable 57

Iloprost Mouse, bleomycin No change in the number of inflammatory cells in the lung and 
collagen content

No change 64

Abbreviations: AdTGF‑β1, adenoviral overexpression of active TGF‑β1; α‑SMA, α‑smooth muscle actin; EMT, epithelial‑mesenchymal transition; 
MMP‑1, matrix metalloproteinase‑1; SOD, superoxide dismutase; TGF‑β1, transforming growth factor‑β1; TIMP‑1, tissue inhibitors of 
metalloproteinase‑1; others, see Figure 1
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effects in asthma,78,79 at least partly mediated via 
epigenetic mechanisms.80,81 Given promising re‑
sults of preclinical studies82-84 and some epide‑
miologic data,85 oral intake of ω/n‑3 PUFA could 
exert beneficial effects in lung fibrosis as well.

Conclusions  Recognition of the emerging role of 
lipids in the maintenance of lung homeostasis has 
opened exciting avenues for the development of 
new therapeutic strategies. FAs and their metab‑
olites are recognized as potent mediators of proin‑
flammatory and profibrotic responses that control 
phenotypic changes of different lung cell popula‑
tions during maladaptive remodeling of the lung 
tissue. The mechanistic insights into the role of lip‑
ids in the pathobiology of lung fibrosis are support‑
ed by a number of studies demonstrating therapeu‑
tic potential of the strategies targeting FAs / FA me‑
tabolites in preclinical models of lung injury. Most 
importantly, the first clinical trial addressing the ef‑
ficacy of inhaled treprostinil in IPF patients is un‑
derway to definitively confirm the intriguing hy‑
pothesis of the causative role of FA and their me‑
diators in lung fibrosis. If this clinical study turns 
out to be successful, it will offer a much needed 
treatment option for this vulnerable group of pa‑
tients. Moreover, the design of clinical trials strat‑
ified by specific comorbidities, known to be prev‑
alent in IPF patients, may lead to a better under‑
standing of true treatment effects and to better 
overall outcomes.
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