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intermittent hypoxia characteristic for OSA leads 
to repetitive ischemic injury, which generates 
an acidic environment within the bones and trig‑
gers an inflammatory reaction, eventually result‑
ing in susceptibility to fractures.5 

Chitinase‑3‑like protein 1 (YKL‑40) is a nov‑
el inflammatory and remodeling marker, which 
has been recently investigated in patients with 
OSA. YKL‑40 levels were found to be higher in 
this population than in healthy controls. Wang et 
al6 suggested that YKL‑40 could be a predictor of 

INTRODUCTION  Obstructive sleep apnea (OSA) 
is characterized by recurrent episodes of arous‑
als and oxyhemoglobin desaturation due to com‑
plete or partial obstruction of the airways dur‑
ing sleep.1,2 It occurs in 4% to 20% of men and 
in 2% to 10% of women, and its incidence is ris‑
ing because of aging and increased rates of obe‑
sity.3,4 There is a growing evidence that OSA in‑
fluences bone metabolism and structure. One of 
the postulated mechanisms by which OSA might 
affect the skeleton is inflammation. Pathological 
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ABSTRACT

INTRODUCTION  There is growing evidence that obstructive sleep apnea (OSA) influences both bone 
metabolism and structure. Chitinase‑3‑like protein 1 (YKL‑40) is a novel inflammatory and remodeling 
marker, the levels of which were shown to increase in OSA. YKL‑40 can probably alter the bone turnover.
OBJECTIVES  The aim of the study was to assess a possible interplay between YKL‑40 and bone turn‑
over markers in patients with different stages of OSA, and to evaluate the relation between bone mass, 
severity of OSA, and YKL‑40 levels.
PATIENTS AND METHODS  The study involved 72 male patients with OSA. They were divided into 3 groups 
according to disease severity, using the apnea–hypopnea index (AHI): group 1 (n = 18; 5≤ AHI <15), 
group 2 (n = 25; 15≤ AHI <30), and group 3 (n = 29; AHI ≥30). All patients underwent polysomnogra‑
phy and densitometry. Fasting blood samples were collected for YKL‑40, C‑terminal telopeptide of type I 
collagen (CTX), procollagen type 1 N‑terminal propeptide (P1NP), and other markers.
RESULTS  P1NP differed between groups 1 and 2, as well as groups 1 and 3 (P = 0.02). Group 2 had 
higher CTX levels than group 1 (borderline significance, P = 0.05). A simple linear regression analysis 
showed that serum YKL‑40 levels were associated with the levels of CTX (P <0.0001, β = 0.9871) and 
P1NP (P <0.0001, β = 0.9780).
CONCLUSIONS  Our study might suggest that YKL‑40 is associated with bone turnover in OSA. We may 
assume that this marker influences both bone formation and destruction; thus, OSA could be character‑
ized by preserved bone mineral density. 
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the Mann–Whitney test. The χ2 test was used 
to compare discrete variables. Relationships be‑
tween data were analyzed with simple regres‑
sion. Before inclusion to this statistical analysis, 
nonnormally distributed parameters were loga‑
rithmically transformed. A stepwise multiple re‑
gression analysis was used to confirm the associ‑
ation of YKL‑40 concentrations and other ana‑
lyzed markers of bone turnover after adjustment 
for body mass index (BMI). A P value of less than 
0.05 was considered significant.

Laboratory analysis  Fasting blood samples 
were collected for the measurement of YKL‑40, 
CTX, P1NP, high‑sensitivity C‑reactive protein 
(hs‑CRP), aspartate transaminase (AST), ala‑
nine aminotransferase (ALT), creatinine, and 
glycated hemoglobin A1c (HbA1c) levels. Serum 
YKL‑40, CTX, and P1NP levels were assessed 
with an enzyme‑linked immunosorbent assay 
kit (Sunred Biological Technology, Shanghai, 
China). The levels of hs‑CRP (reference range 
<5 mg/dl [SI units, nmol/l]), AST (10–37 U/l 
[μmol/l]), ALT (10–41 U/l [μmol/l]), and creat‑
inine (0.7–1.20 mg/dl [μmol/l]) were measured 
with an electrochemiluminescence method using 
Cobas 6000 (Roche Diagnostics, Mannheim, Ger‑
many). HbA1c levels (<6.5% [proportion of total 
hemoglobin]) were assessed with an immuno‑
turbidimetric assay using Architect i1000 (Abbot 
Diagnostics, Warsaw, Poland). Informed consent 
was obtained from all participants. The study was 
approved by a local bioethics committee and per‑
formed in accordance with the latest version of 
the Declaration of Helsinki.

Polysomnography  Complete overnight polysom‑
nography was performed by an experienced sleep 
technician at the Sleep Laboratory in the Depart‑
ment of Pulmonology, Allergology, and Respirato‑
ry Oncology at the Poznan University of Medical 
Sciences (Poznań, Poland) from 10 PM to 6 AM, 
using EMBLA S4000 – Remlogic, Somnologica 
Studio 5.0; Natus 2009 (Embla, Broomfield, Col‑
orado, United States). An electroencephalogram, 
electromyogram, electrooculogram, electrocar‑
diogram, hemoglobin oxygen saturation (fin‑
ger pulsoximetry), the airflow through the nose 
and mouth (thermistor, nasal cannula), abdom‑
inal and thoracic movements, snoring sounds, 
and positions during sleep were observed and 
recorded. Apnea was defined as more than 90% 
and hypopnea as at least 30% reduction of air‑
flow for more than 10 seconds and associated 
with a decrease of more than 4% in oxygen sat‑
uration. The AHI was defined as an average num‑
ber of apneas and hypopneas per hour of sleep.8

Bone mineral density  Bone mineral density (BMD) 
at the lumbar spine (L1–L4) was obtained with 
dual energy X‑ray absorptiometry (Lunar Prod‑
igy Primo, Warsaw, Poland). The results were 
presented as grams per square centimeter and 
T‑score.

the occurrence and progression of OSA. Serum 
YKL‑40 levels are also elevated in disorders as‑
sociated with chronic inflammation and tissue 
remodeling. This encompasses diseases charac‑
terized by bone destruction. Mylin et al7 dem‑
onstrated a connection between increased se‑
rum YKL‑40 levels and bone turnover markers, 
with the dominance of bone resorption (the ra‑
tio of C‑terminal telopeptide of type I collagen 
[CTX] to amino-terminal propeptide of type I 
collagen [P1NP]). Moreover, previous studies 
explored the role of YKL‑40 in osteoclast func‑
tion.7 CTX is a peptide released as a product of 
bone degradation. Tomiyama et al5 showed that 
CTX levels are increased in the urine of patients 
with OSA, but they decrease after continuous 
positive airway pressure therapy. 

In the light of previous research, we aimed to 
assess a possible interplay between YKL‑40 and 
bone turnover markers in patients with differ‑
ent stages of OSA. To our knowledge, there have 
been no previous studies investigating a poten‑
tial association between YKL‑40 and bone me‑
tabolism in such population. We also evaluat‑
ed a relation between YKL‑40, bone mass, and 
OSA severity. Considering the rising prevalence 
of OSA and osteoporosis, as well as the phenom‑
enon of population aging in industrialized coun‑
tries, it is important to investigate the possible 
links between those entities.5

PATIENTS AND METHODS  Study design and enroll-
ment of patients  We enrolled consecutive male 
patients aged older than 50 years who were ad‑
mitted to outpatient sleep clinics between Janu‑
ary 2016 and September 2016 due to symptoms 
suggesting OSA, and who obtained 10 points or 
more in the Epworth Sleepiness Scale and were 
thus referred for polysomnography. The total 
study sample comprised 72 patients with newly 
diagnosed OSA, who were divided into 3 groups 
according to disease severity assessed using 
the apnea–hypopnea index (AHI): group 1 (n = 
18; 5≤ AHI <15), group 2 (n = 25; 15≤ AHI <30), 
and group 3 (n = 29; AHI ≥30). We also analyzed 
concomitant disorders with a special emphasis 
on cardiovascular disease (CVD).

The exclusion criteria were as follows: previ‑
ous treatment for osteoporosis, active neoplas‑
tic process, central sleep apnea–hypopnea syn‑
drome, thyroid dysfunction, and impaired liver 
or renal function (creatinine level >1.2 mg/dl).

Statistical analysis  Statistical analysis was 
performed with the MedCalc Statistical Soft‑
ware version 16.8 (MedCalc Software bvba, Os‑
tend, Belgium; https://www.medcalc.org; 2016). 
The D’Agostino–Pearson test was used to assess 
normality. Variables with a normal distribu‑
tion were compared between the groups with 
the 1‑way analysis of variance. The Krusal–Wal‑
lis test was performed when data did not ful‑
fil the normality criteria. Data that did not fol‑
low a normal distribution were compared with 
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RESULTS  Biochemical and clinical character‑
istics of the groups are presented in TABLE 1. 
The groups did not differ in age or the levels of 
HbA1c, ALT, AST, creatinine, hs-CRP, YKL‑40, or 
L1–L4 BMD. Group 2 had a higher CTX level (P 
= 0.05) than group 1. P1NP levels differed be‑
tween groups 1 and 2, and groups 1 and 3 (P = 
0.02). BMI was higher in group 3 than in group 
2 (P = 0.02) (TABLE 1).

The linear regression analysis showed that 
serum YKL‑40 levels were significantly asso‑
ciated with CTX levels (P <0.0001, β = 0.99) 
(FIGURE 1) and P1NP levels (P <0.0001, β = 0.98) 
(FIGURE 2). These associations were observed also 
after adjustment for BMI. There were no associ‑
ations between YKL‑40 levels and AHI, hs-CRP, 
L1–L4 BMD, HbA1c, T‑score, age, or BMI (TABLE 2). 
CVD was present in 58 patients (group 1, 25% of 
the patients; group 2, 34.7%; group 3, 40.3%). 
Coronary heart disease was reported in 16 pa‑
tients; hypertension, in 51; heart failure, in 4; 
stroke, in 5; arrhythmia in 6; and peripheral vas‑
cular disease, in 2. There was a trend for a high‑
er incidence of CVD in patients with a more ad‑
vanced stage of OSA (P = 0.05). However, YKL‑40 
levels did not differ between the groups with and 
without CVD (P = 0.27).

DISCUSSION  YKL‑40 is a glycoprotein expressed 
by a wide variety of cells, depending on their 
cellular activity. This encompasses osteoblasts 
and osteoclasts in tissues with intensive bone 
turnover. In a previous study, in a normal bone 
marrow, YKL‑40 was detected by immunohisto‑
chemistry in both osteoblasts and osteoclasts.9,10 
YKL‑40 is secreted by, for example, neoplastic 
cells, neutrophils, macrophages, chondrocytes, 
and vascular muscles.11 The biomarker was first 
discovered by Mansell et al12 as a protein secret‑
ed by human osteosarcoma‑derived osteoblasts 
(cell line MG63). In that study, YKL‑40 expres‑
sion was stimulated by active vitamin D. Thus, 
the association between vital skeletal health pro‑
moter and YKL‑40 synthesis by osteoblasts has 
been proved.12 While normal fetal and adult os‑
teoblast cultures did not secrete YKL‑40, the ex‑
pression of YKL‑40 mRNA was seen in osteo‑
blasts present within osteophytes in patients 
with osteoarthritis.13 The YKL‑40 expression in‑
creases with the stage of osteoclastogenesis in 
monocytes, stimulated to gain osteoclast differ‑
entiation. These observations imply that the ex‑
pression of YKL‑40 may be related to the stage 
of cell maturation.14 It might also be associated 
with a reaction of these cells to an altered tissue 
environment.15 Since OSA is known to change 
conditions in the bones, we hypothesized that 
there might be an association between YKL‑40 
levels and bone turnover markers.

Apart from triggering an inflammatory reac‑
tion, OSA influences the skeleton through sev‑
eral mechanisms. It alters sleep patterns, thus 
possibly leading to desynchrony in the clock 
gene expression in bones. It also stimulates 

TABLE 1  Biochemical and clinical characteristics of the study groups divided 
according to the severity of obstructive sleep apnea

Parameter Group 1 
5≤ AHI <15 
(n = 18)

Group 2 
15≤ AHI <30 
(n = 25)

Group 3  
AHI ≥30 
(n =29)

P value

Age, y 62 (57–69) 61 (56.5–65.2) 62 (56–67.2) 0.89

BMI, kg/m2 31.3 (27.4–35.6) 29.7 (28.7–31.3) 33.2 (29.9–36.7) 0.02

HbA1c, % 5.4 (5.3–6.5) 5.6 (5.5–6.0) 5.9 (5.6–6.1) 0.40

ALT, U/l 28 (23–42) 28 (23.2–34.5) 28 (20.7–44.5) 0.82

AST, U/l 25 (20–34) 22 (19–25) 22 (19–27.2) 0.37

Creatinine, 
mg/dl

0.9 (0.9–1.0) 0.9 (0.8–1.0) 1.0 (0.9–1.0) 0.28

Hs‑CRP, 
mg/dl

1.5 (0.9–3.0) 2.3 (0.5–2.8) 2.2 (1.2–3.3) 0.20

AHI 8.5 (6–13.3) 21.9 (18.4–24.6) 50.3 (39.2–62.3) <0.00

YKL‑40, 
ng/ml

49.9 (42.1–54.4) 51.5 (46.2–151.8) 51 (46.2–89.1) 0.42

CTX, ng/ml 199 
(182.0–216.0)

249.9 
(205.825–729.1)

222.2  
(181.4–420.3)

0.05

P1NP, ng/ml 72.2 
(66.30–79.1)

81.6 
(74.6–237.9)

79.2 
(69.7–147.4)

0.02

L1–L4 T‑score −0.1 (−1.5 to 
1.4)

−0.3 (−1.8 to 1.4) −0.2 (−1.5 to 
1.8)

0.79

L1–L4 BMD, 
g/cm2

1.3 (1.1–1.4) 1.2 (1.1–1.4) 1.3 (1.1–1.5) 0.47

Data are presented as median (interquartile range).

Conversion factors to SI units are as follows: for ALT, 16.67; AST, 16.67; creatinine, 
88.4; hs‑CRP, 95.24; HbA1c, 0.01.

Abbreviations: AHI, apnea–hypopnea index; ALT, alanine aminotransferase; AST, 
aspartate transaminase; BMD, bone mineral density; BMI, bone mass index; hs‑CRP, 
high‑sensitivity C‑reactive protein; CTX, C‑terminal telopeptide of type I collagen; 
HbA1c, glycated hemoglobin A1c; L1–L4, lumbar spine disks 1–4; OSA, obstructive sleep 
apnea; P1NP, procollagen type 1 N‑terminal propeptide; YKL‑40, chitinase‑3‑like 
protein 1

FIGURE 1  Association between chitinase‑3‑like protein 1 (YKL‑40) and C‑terminal 
telopeptide of type I collagen (CTX). Data were log‑transformed to achieve a normal 
distribution.
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mean age, 49 years) was 43 ng/ml.7 However, 
since the reference range for YKL‑40 levels has 
not been established yet, it is not possible to as‑
sess whether a slight elevation of YKL‑40 lev‑
els observed in our study is clinically significant.

From among the bone turnover markers, we 
chose to assess CTX (resorption) and P1NP (for‑
mation), as they are regarded as the most use‑
ful.20,21 However, the biological and laboratory 
variability in the values of bone turnover mark‑
ers has limited their widespread clinical imple‑
mentation.22 The reference ranges for P1NP and 
CTX levels should be age- and sex‑related. Sever‑
al studies provided reference values for CTX and 
P1NP, but they were derived from serum auto‑
mated methods.23-26

To date, there have been few studies investi‑
gating bone turnover in OSA and the results have 
been conflicting. Tomiyama et al27 first provided 
the evidence for a link between OSA and abnor‑
mal bone metabolism. They described severity
‑dependent elevations in the serum and urinary 
levels of bone resorption markers (such as CTX) 
and their reversal following continuous positive 
airway pressure therapy in patients with OSA. 
Terzi et al28 found that serum CTX levels, but 
not osteocalcin, were significantly higher in pa‑
tients with OSA than in controls. However, Chen 
et al29 did not find differences between patients 
with and without OSA in terms of bone turnover 
markers. We found that both CTX and P1NP lev‑
els increased with an increase in the AHI. It might 
be possible that not only the rates of bone de‑
struction but also of bone formation rise with 
the AHI. OSA might contribute to an increased 
rate of bone metabolism, not just bone resorp‑
tion. The lack of differences in BMD between 
the 3 groups may further support this finding.

Recent studies have examined the relation‑
ship between OSA and BMD in humans, with 
conflicting results. In a retrospective longitudi‑
nal cohort study, Chen et al30 reported that pa‑
tients with OSA are 2.7‑fold more prone to devel‑
op osteoporosis than controls. A meta‑analysis 
by Upala et al31 showed that among the includ‑
ed cohort studies, the pooled odds ratio (OR) 
of osteoporosis was 1.92 (confidence interval 
[CI], 1.24–2.97) in patients with OSA in compar‑
ison with controls. However, a cross‑sectional 
meta‑analysis proved that the control group was 
more prone to develop osteoporosis (OR, 0.60; 
95% CI, 0.42–0.87).31 Mariani et al32 did not find 
any correlation between the BMD of the lumbar 
spine, femoral neck, or total hip and the stage of 
OSA. In addition, Sforza et al33 revealed higher 
BMD values in patients with OSA than in the con‑
trol group. The strength of their study was a large 
sample size (n = 832). In animal models resem‑
bling OSA, intermittent hypoxia was not associ‑
ated with differences in trabecular BMD in the fe‑
mur in normoxic and hypoxic mice. The authors 
even suggested that chronic intermittent hypox‑
ia might protect bone density. The limitations 
of the study include a short follow‑up, while in 

the sympathetic system by sleep fragmentation 
and by an increase in leptin concentrations. Ex‑
cessive activation of sympathetic system ham‑
pers bone formation. Sleep disturbances alter 
the secretion cycle of melatonin, thus inhibit‑
ing its beneficial effects on the bones. Moreover, 
OSA reduces vitamin D production. This steroid 
not only plays a vital role in bone formation, 
but is also believed to have anticancer and anti
‑inflammatory properties.16

YKL‑40 has been implicated in inflammation, 
endothelial dysfunction, and tissue remodeling. 
It was also shown to be associated with the pres‑
ence and severity of OSA. Duru et al17 underlined 
the usability of serum YKL‑40 as an inflammato‑
ry biomarker in these patients. YKL‑40 may be 
also a predictor of endothelial dysfunction and 
atherosclerosis in patients with OSA.18,19 The me‑
dian serum concentration of YKL‑40 measured 
in 245 healthy adults (both men and women; 

FIGURE 2  Associations between chitinase‑3‑like protein 1 (YKL‑40) and procollagen 
type 1 N‑terminal propeptide (P1NP). Data were log‑transformed to achieve a normal 
distribution.
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TABLE 2  Associations between serum chitinase‑3‑like protein 1 levels and selected 
parameters in the study group

Parameter YKL‑40

β P value

Age 0.02 0.80

BMI −0.13 0.82

AHI 0.11 0.35

Hs‑CRP −0.14 0.13

HbA1c −1.44 0.09

L1–L4 BMD 0.06 0.88

L1–L4 T‑score 0.00 1.00

CTX 0.99 <0.0001

P1NP 0.98 <0.0001

Abbreviations: see TABLE 1
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circulating OPG levels could be used as an inde‑
pendent biomarker of CVD.41,42 Sclerostin is se‑
creted mainly by osteocytes. In women with OSA, 
serum sclerostin levels correlated with the AHI 
and were higher in patients with CVD.43

In conclusion, to our knowledge, this is 
the first study to show a positive correlation be‑
tween YKL‑40 levels and bone turnover markers 
in patients with OSA. Our results also support 
a hypothesis that OSA may affect both bone de‑
struction and formation. The possible association 
between YKL‑40, bone metabolism, and severi‑
ty of OSA requires further research.

Limitations  The main limitations of this study 
are the small sample size and the lack of a healthy 
control group. However, this was a preliminary 
research aiming at the initial assessment of possi‑
ble interactions and at designing future prospec‑
tive studies based on the results. The strength of 
this study is the fact that the diagnosis of OSA 
was confirmed by polysomnography rather than 
being established on the basis of questionnaires 
assessing history and symptoms. What is more, 
to our knowledge, this is the first study to evalu‑
ate any interaction between BMD, bone turnover 
markers, and YKL‑40 levels in patients with OSA. 
Our study might thus suggest that YKL‑40 is as‑
sociated with bone turnover in OSA. We may as‑
sume that OSA influences both bone formation 
and destruction markers; therefore, it could be 
characterized by preserved BMD.
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