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even mild obstruction, without a reduction in 
forced expiratory volume in 1 second, was a risk 
factor for lung cancer. Another independent in­
dicator is the presence of emphysema on a low­
‑radiation‑dose computed tomography (CT) scan 
of the chest. Emphysema is associated with in­
creased risk of lung cancer in individuals without 
airflow obstruction on spirometry, as well as those 
with coexistent airway obstruction and emphy­
sema.12,13 The results of multiple analyses inves­
tigating the link between COPD and lung cancer 
also differ depending on the type of study, from 
lung‑cancer screening trials to population‑based 
and case‑control studies.14,15 The causative role 
of COPD in lung cancer is supported by the find­
ing that 40% to 70% of patients with lung can­
cer had clinically confirmed COPD that devel­
oped prior to cancer.16-18 According to mortality 
studies, 20% to 30% of patients with COPD die 
from lung cancer.19

Prevention and early detection of lung cancer in pa-
tients with chronic obstructive pulmonary disease: 
screening programs and reducing exposure to risk 
factors  Given that COPD favors carcinogene­
sis in the respiratory system, there is a need to 

Introduction  There is accumulating evidence con­
firming that chronic obstructive pulmonary dis­
ease (COPD) is a risk factor for lung cancer.1 How­
ever, the mechanism linking the 2 diseases has 
not been fully elucidated. This review aims to 
present a novel insight into the common patho­
genesis of COPD and lung cancer. We particular­
ly focused on the new aspects of tumorigenesis 
in COPD patients, namely, inflammation as well 
as cellular senescence and aging.

Epidemiology of chronic obstructive pulmonary disease 
and lung cancer  The increased risk of lung cancer 
in COPD patients was first described by Skillrud 
et al2 in 1987, who showed that the 10‑year cumu­
lative risk of lung cancer was 8.8% for COPD pa­
tients, compared with 2.0% for controls. The prev­
alence of lung cancer in COPD patients varies be­
tween studies, depending on the study popula­
tion, and hence on disease phenotype, severity 
of obstruction, age, other respiratory diseases, 
and smoking status (TABLE 1, FIGURE 1).3-11 At the 
same time, numerous studies have shown that 
airway obstruction in COPD is associated with 
an increased risk of lung cancer, independently 
of smoking.4,9,10 Calabro et al11 documented that 
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ABSTRACT

Patients with chronic obstructive pulmonary disease (COPD) are at increased risk of lung cancer, indepen‑
dently of smoking, although the link between these diseases remains unknown. Possible pathophysiologic 
mechanisms include inflammation and cellular senescence. COPD is a  chronic inflammatory disease 
associated with secretion of numerous inflammatory mediators, many of which play a documented role 
in the promotion of cancer cell progression. COPD is also an age‑related disease involving increased 
cellular senescence, an important hallmark of aging. Previous studies have confirmed the significant role 
of cellular senescence in the development of various tumors, including lung cancer. It is highly probable 
that cellular senescence contributes to carcinogenesis in COPD patients.



REVIEW ARTICLE  Lung cancer in patients with COPD 463

protect against lung cancer and to reduce the 
risk of its occurrence by decreasing exposure to 
harmful factors. 

Multiple studies have confirmed the benefits 
of screening for lung cancer with low‑dose CT 
in high‑risk current and former smokers.20 CT, 
when performed at intervals in COPD patients 
with a history of smoking, was associated with 
a higher detection rate of lung cancer and diag­
nosis at earlier stages.21,22 The results of screen­
ing programs show that it is especially useful to 
implement screening procedures in emphyse­
matous patients with severe obstruction and as­
sociated comorbidities.23 The available evidence 
shows that CT screening can reduce lung can­
cer–specific mortality.24 The screening programs 
prove to be better than other interventions, such 
as quitting smoking or treatment.25 However, de­
spite the numerous advantages, they are asso­
ciated with the risk of false‑positive results for 
small nodules, which must then be further eval­
uated.26 Therefore, there is a need for develop­
ing newer methods that could identify patients 
with COPD and smoking history who are at risk 
of lung cancer. 

Lung cancer screening scores based on body 
mass index, history of smoking, age, and em­
physema or carbon monoxide diffusion capacity 
are easy‑to‑employ diagnostic tools for assessing 
the risk of lung cancer.27 On the other hand, real­
‑time elastography performed during endoscopic 
ultrasound, fluoroscopic‑guided radial endobron­
chial ultrasound, chest ultrasound, and linear en­
dobronchial ultrasound are more advanced proce­
dures that may prove promising in the future.28-31

TABLE 1  Prevalence of lung cancer in patients with chronic obstructive pulmonary 
disease in various studies

Study No. of cases: COPD, controls (n); 
description of the study group

Odds of lung cancer in 
COPD patients, fully 
adjusted OR (95% CI)

Schwartz 
et al3

175, 81; women with combined 
obstructive lung disease classification

1.67 (1.15–2.41)

Koshiol et al5 509, 174 2.5 (2.0–3.1)

Powell et al7 2757, 2286 –

404, 140; COPD diagnosis within 
6 months

6.81 (5.49–8.45)

199, 172; COPD diagnosis 
in 6–12 months

2.52 (2.00–3.19)

1033, 947; COPD diagnosis in 1–5 years 2.48 (2.24–2.75)

690, 580; COPD diagnosis in 5–10 years 2.68 (2.36–3.05)

431, 447; COPD diagnosis ≥10 years 2.18 (1.87–2.54)

Denholm 
et al8

920, 647 –

751, 577; only bronchitis 1.39 (1.21–1.59)

77, 37; bronchitis and emphysema 1.70 (1.09–2.66)

92, 33; only emphysema 2.68 (1.71–4.21)

Kishi et al9 19, 64 –

8, 35; FEV1/FVC × 100% (61–70) 1.6 (0.5–5.6)

4, 17; FEV1/FVC × 100% (51–60) 1.7 (0.4–7.4)

7, 12; FEV1/FVC × 100% ≤50 4.1 (1.0–17.2)

Mannino 
et al10

54, 899 –

16, 423; mild obstruction 1.4 (0.8–2.6)

38, 476; moderate to severe obstruction 2.8 (1.8–4.4)

Calabro 
et al11

17, 839 1.23 (0.68–2.25)

Abbreviations: COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory 
volume in 1 second; FVC, forced vital capacity; OR, odds ratio

FIGURE 1�  Risk factors 
of lung cancer in patients 
with chronic obstructive 
pulmonary disease 
(COPD)
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metalloproteinase (MMP)-2, MMP‑7, and MMP­
‑9,56 CXCL12/SDF1,57 and CCL21.58,59

Different cells are involved in the secretion of 
inflammatory molecules. Tertiary lymphoid ag­
gregates created during inflammatory response 
to proteases and free radicals secreted by activat­
ed leukocytes may reflect lymphoid neogenesis, 
the first step of tumorigenesis, and could affect 
regulatory mechanisms, such as autophagy, apop­
tosis, angiogenesis, and cell repair.60 Moreover, 
molecules secreted by T cells may also participate 
in tumorigenesis. An increase in the blood levels 
of Th2 cytokines (IL‑4 and IL‑10) was observed 
in patients with lung cancer, while those released 
by Th1 (IL‑2 and interferon γ) were shown to de­
crease.61 Additionally, myeloid‑derived suppres­
sor cells may affect T cells and regulate inflam­
mation and carcinogenesis.62

Other cells that participate in tumorigene­
sis include macrophages. During tumor progres­
sion, macrophages are recruited to the site of can­
cer by a wide spectrum of chemoattractants, de­
rived from the tumor and surrounding stroma. 
Once present in the tumor microenvironment, 
the macrophages can change their functional phe­
notype. At the early stage of cancer, tumor-sup­
pressive M1 phenotype of macrophages occurs, 
which limits the progression of the malignancy. 
As tumorigenesis progresses, the macrophages ac­
quire the tumor‑promoting M2 phenotype, turn­
ing into the so called tumor‑associated macro­
phages, and alter the microenvironment to sup­
port tumor development.63-65

Chronic obstructive pulmonary disease and cellular 
senescence of normal lung cells  One of the func­
tions of cellular senescence is to control the un­
limited cell proliferation. In the 1960s, Hayflick 
and Moorehead66 observed for the first time that 
cultured normal human cells undergo a limited 
number of divisions, after which they become se­
nescent (FIGURE 2). This phenomenon was described 
as replicative senescence. In contrast, premature 
senescence occurs as the result of various endoge­
nous and exogenous stressors, including oxidative 
stress, oncogene activation, and DNA damage.67,68 
Senescent cells change their morphology: they be­
come bigger and flatter, contain more proteins, 
and their chromatin is reorganized. On becom­
ing senescent, cells acquire an important ability 
to secrete a wide range of cytokines, chemokines, 
matrix remodeling proteases, and growth factors, 
which is referred to as senescence‑associated se­
cretory phenotype.69 Moreover, senescence occurs 
not only in cells directly localized in the airways, 
but also in the microenvironment. The intercel­
lular communication of senescent cells with nor­
mal neighboring cells has been described in previ­
ous studies.70-72 Mikuła‑Pietrasik et al73,74 report­
ed that senescent human peritoneal mesothelial 
cells can alter the secretory profile of ovarian can­
cer cells in a paracrine manner, supporting their 
invasiveness in the peritoneal cavity.

Cigarette smoke and air pollution remain 
the most common risk factors of both COPD and 
lung cancer.32,33 While cigarette smoke is respon­
sible for even more than 90% of lung cancer cas­
es, occupational exposure to particles, including 
carcinogens, such as polycyclic aromatic hydro­
carbons, arsenic, nickel, and chromium, is associ­
ated with geographical region and is estimated to 
be responsible for 1% to 2% of lung cancer cases.34

A substantial body of evidence has confirmed 
the benefits of quitting smoking. In COPD pa­
tients who quit smoking, the risk of non–small 
cell lung cancer was reduced, although did not 
return to baseline.35,36 The available data sug­
gest that participation in screening programs in­
creases the motivation to quit smoking, thus en­
hancing its effectiveness, which, however, is still 
quite low.37 The positive results of low‑dose CT 
also correlated with the maintenance of nicotine 
abstinence.38 Regarding occupational exposure, 
air pollution prevention programs should be un­
dertaken to reduce risk of smoking‑dependent 
diseases, especially in urban areas.39

Inflammation in chronic obstructive pulmonary dis-
ease and its significance for promoting lung can-
cer  A broad spectrum of different factors has 
been identified to be involved in tumorigenesis 
in COPD patients, including the deleterious activ­
ity of tobacco smoke, mutations, insufficiency of 
DNA repair mechanisms, and oxidative stress.40 
Interestingly, a common element linking all these 
agents is chronic tissue inflammation.41 It is well 
known that inflammation that occurs in COPD 
results from chronic exposure to cigarette smoke, 
other risk factors, as well as aging.42 Cigarette 
smoke induces the secretion of numerous inflam­
matory mediators, including lipids, free radicals, 
cytokines, chemokines, and growth factors, such 
as interleukin (IL)-1, IL‑8, transforming growth 
factor (TGF)-β, and chemokine CCL21.43,44 Many 
of these mediators have been shown to promote 
various mechanisms involved in multiple cancer 
cell progression.45-47 They are also responsible for 
the major steps in lung cancer progression, includ­
ing adhesion, migration, and proliferation. For ex­
ample, IL‑1β and tumor necrosis factor (TNF)-α, 
whose production is increased in COPD patients, 
have been found to induce the expression of ad­
hesion molecules (eg, intercellular adhesion mol­
ecule 1 [ICAM‑1]) in lung cancer cells and their 
more pronounced attachment to the vascular en­
dothelium.48 In addition, the adhesion of lung 
cancer cells has been linked to the expression and 
activity of multivalent extracellular matrix (ECM) 
constituents (fibronectin, type IV collagen) and 
their interactions with β1 integrins.49,50 These in­
teractions lead to phosphorylation of focal adhe­
sion molecule, which, in turn, results in augment­
ed cancer cell migration and proliferation. Lung 
cancer cell motility has also been stimulated by 
prostaglandin E2,51 urokinase‑type plasmino­
gen activator receptor (uPAR/CD87),52 Cdc42,53 
CYR 61,53 claudin‑1,54 stromelysin‑3,55 matrix 
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promote the growth of breast cancer cells in vi­
tro and the development of solid tumors in vivo 
much more effectively than their younger coun­
terparts. The same was observed for peritoneal 
mesothelial cells in which senescence appeared 
to stimulate ovarian, colorectal, and pancreat­
ic cancer cell adhesion to a larger extent than in 
the case of young proliferating cells.83,84 

It is well known that senescent cells, which 
accumulate in tissues in vivo, have several pro­
‑oncogenic features. The most relevant feature is 
the ability to increase secretion of numerous solu­
ble mediators involved in important processes in 
cancer spread, such as inflammation, angiogene­
sis, ECM remodeling, and the epithelial–mesen­
chymal transition. This hallmark of senescence 
is called senescence‑associated secretory pheno­
type, and the mediators include cytokines (IL­
‑1, IL‑6, and IL‑7),85 chemokines (CXCL8/IL‑8, 
CXCL12/SDF‑1, CCL21/CCR7, and CXCL5/ENA­
‑78),58,86-88 growth factors (chemokine growth­
‑regulated oncogene 1, heregulin β, vascular en­
dothelial growth factor, TGF-β1, connective tis­
sue growth factor, hepatocyte growth factor, and 
fibroblast growth factor),89,90 shed surface mole­
cules (ICAM‑1, uPAR, and TNF receptors),84 and 
stromal ECM modulators (PAI‑1, u‑PA, MMP‑2, 
and MMP‑9).91-93 Some of these agents are known 
to mediate various processes involved in lung tu­
morigenesis, such as proliferation (CXCL12 and 
CCL21), migration (CCL21), and invasion (CXCL5) 
(FIGURE 3).58,94,95

COPD and lung cancer are age‑related diseas­
es (FIGURE 4). Increased cellular senescence is one 
of the major indicators of aging.96 There is grow­
ing evidence to support the presence of cellular 
senescence in COPD patients.97 Its role in pro­
moting invasiveness of many tumors, including 
lung cancer, has been widely confirmed. A role of 
cellular senescence in the overlap of COPD and 

Holz et al75 were the first to discover cellu­
lar senescence in lung fibroblasts of patients 
with emphysema, confirming that the affect­
ed cells were less able to proliferate than cells 
from healthy volunteers. Subsequent studies 
documented the senescent‑related phenotype 
in other cells from COPD patients, such as bron­
chial epithelial and endothelial cells.76 Type II 
alveolar epithelial cells from the lung tissue of 
emphysematous patients showed reduced telo­
mere length characteristic of replicative senes­
cence.76 Shortened telomeres were also seen in 
circulating leukocytes from COPD patients of 
various ages.77,78 Similarly, reduced telomerase 
activity associated with cellular senescence and 
increased expression of cytokines has been de­
scribed in the pulmonary endothelial cells of pa­
tients with COPD.79

Cellular senescence and the risk of cancer  In re­
cent years, it has been documented that the de­
velopment of primary and metastatic tumors may 
be promoted by senescent cells that accumulate 
in vivo.80,81 Senescent cells can produce multiple 
agents, including soluble signaling factors (inter­
leukins, chemokines, and growth factors), secret­
ed proteases, and secreted insoluble proteins and 
ECM components. This senescence‑messaging sec­
retome participates in the promotion of the most 
important processes associated with carcinogen­
esis, such as adhesion, proliferation, and migra­
tion. The frequency of cancer increases progres­
sively with age, beginning at middle age. In gen­
eral, the rate of cancer development is propor­
tional to the rate of aging. This is certainly related 
to increased frequency of oncogenic mutations. 
It is less obvious, but widely documented, that 
the microenvironment is necessary to transform 
premalignant cells into invasive ones. For exam­
ple, as shown by Krtolica et al,82 senescent cells 

FIGURE 2�  Hayflick 
phenomenon. Division
‑competent cells in 
culture will divide until 
they reach the limit of 
divisions, after which they 
become senescent.
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cells are bigger, flatter, contain more protein, and the chromatin undergoes reorganization. The characteristic features presented by cells undergoing 
senescence include involvement of the p53/p21 and p16/pRb pathways and an increase in senescence‑associated β‑galactosidase (SA-βgal), which 
can be seen on staining. Functional characteristics of senescent cells include irreversible growth arrest, resistance to apoptosis, and change of gene 
expression. Senescent cells display changes in their secretome, which is known as “senescence‑associated secretory phenotype” (SASP).
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