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and 20 controls. Patients were recruited from 
the pulmonary outpatient department of the Pub­
lic Central Teaching Clinical Hospital of the Med­
ical University of Warsaw (Warsaw, Poland). In 
all patients, the diagnosis of asthma and COPD 
was previously established according to the Glob­
al Initiative for Asthma and Global Initiative for 
Chronic Obstructive Lung Disease guidelines, re­
spectively. The following evaluations were per­
formed after patient enrollment: medical histo­
ry, physical examination, spirometry with flow­
‑volume curve, airway obstruction reversibility 
test (when applicable), allergy skin prick tests, 
and sputum induction. Patient characteristics 
are shown in Supplementary material (Table S1).

The study protocol was approved by the institu­
tional review board (KB/249/2016). An informed 
consent was obtained from all study participants.

Methods  Sputum induction and processing was 
proceeded as previously described.8 A FITC Pos­
itive Selection Kit (StemCell, Vancouver, Cana­
da) was used for sputum macrophage (SM) sep­
aration. The immunomagnetic separation of cells 
labeled with CD68+ FITC antibody (Thermo Fish­
er, Waltham, Massachusetts, United States) was 
performed according to the manufacturer’s in­
struction. The number of macrophages in isolat­
ed cells was evaluated on May–Grünwald Giem­
sa stained smears (Supplementary material, Ta-
ble S2). The threshold for macrophage‑dominated 
material was arbitrarily set as more than 50% 
of isolated cells. The total RNA was isolated us­
ing the Tri reagent/chloroform method (Sigma­
‑Aldrich, Saint Louis, Missouri, United States). 
RNA quality was measured with the  Agilent 
2100 bioanalyzer (Agilent Technologies, Santa 
Clara, Califorinia, United States). Transcriptomic 

Introduction  Pulmonary macrophages are impor­
tant effector immune cells that are involved in rec­
ognition of pathogens, ingestion and killing of mi­
crobes, clearance of debris, initiation and regula­
tion of inflammatory responses, and adaptive im­
munity.1 Some data suggest that dysfunction of 
macrophages may play a role in the pathogenesis 
of obstructive lung diseases: asthma and chronic 
obstructive pulmonary disease (COPD).2,3 Alveo­
lar macrophages (AMs) from patients with severe 
asthma produce higher amounts of interleukin 6, 
CXCL8, and other proinflammatory mediators as 
compared with AMs from patients with mild asth­
ma.4 It has been reported that bronchial macro­
phage (BM) phagocytosis is reduced in both eo­
sinophilic and noneosinophilic asthma.5 The re­
sults of some studies suggest that impaired mac­
rophage phagocytosis of pathogens and apoptot­
ic bodies in COPD promotes local inflammation 
and tissue damage in COPD.6

Most studies on macrophage characteristics in­
volved bronchoalveolar lavage fluid, which con­
tains mainly AMs. Much less is known about BMs 
and their subpopulations. Induced sputum (IS) is 
an easily accessible and valuable respiratory sam­
ple, which mainly reflects the cellular profile of 
macrophages located in the trachea and large- and 
medium‑sized bronchi (BMs). Macrophages ob­
tained from IS of patients with asthma are phe­
notypically and functionally altered compared 
with healthy individuals.7

The  aim of the  study was to characterize 
the molecular features of IS macrophages from 
patients with asthma and COPD.

Patients and methods  Study design  This was 
a prospective cross‑sectional study including 
15 patients with COPD, 20 patients with asthma, 
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value, 0.09) when comparing  ICS‑naive and ICS­
‑treated patients with asthma (Supplementary 
material, Table S3). The numbers of differentially 
expressed genes that did not pass the correction 
for multiple hypothesis testing (P <0.05) were as 
follows: 8046 genes (11 210 probe sets) between 
ICS‑naive and ICS‑treated asthma, 9294 genes 
(14 562 probe sets) between ICS‑naive asthma 
and COPD, and 6538 genes (8906 probe sets) 
between ICS‑treated asthma and COPD groups. 
The most significantly regulated microarray probes 
are shown in Supplementary material (Table S3).

The enrichment of Gene Ontology terms was 
checked among 5% of genes with the lowest P val­
ue. The comparison of Gene Ontology pathways 
between asthma and COPD groups showed 17 up­
regulated and 26 downregulated biological pro­
cesses (adjusted P value <0.05). The most signif­
icantly regulated pathways are listed in Supple­
mentary material (Table S4).

Quantitative real‑time polymerase chain re­
action (PCR) was performed to assess the per­
formance of the 20 selected genes identified by 
using microarray, 16 of which were amplified in 
real‑time PCR (2–∆∆CT method). Cells isolated from 
nonsmoking and smoking subjects were used 
as controls for asthma and COPD, respectively. 
The expression of the most regulated genes was 
evaluated in the group of 17 controls (7 nonsmok­
ers, 10 smokers), 15 patients with asthma, and 
11 patients with COPD (TABLE 1).

Discussion  Our study demonstrated that SMs 
from asthma, COPD, and control groups are 

measurements were performed using Affymetrix 
Human Gene 2.1 ST ArrayStrip (Thermo Fisher).

Statistical analysis  Statistical analysis was per­
formed with the use of Statistica 12.0 software 
package (StatSoft Inc., Oklahoma, United States) 
or R environment. Continuous data were com­
pared using the Mann–Whitney test. Microar­
ray data were exported by creating.cel files with 
Gene Atlas Instrument Control Software (Af­
fymetrix, Thermo Fisher) and analyzed with R 
(version 3.4.1, https://cran.r-project.org/). Data 
were quantile normalized, background correct­
ed, and summarized using the rma function from 
oligo package (version 1.40.2, default parame­
ters). The probe sets associated with the X and Y 
chromosomes were omitted. Differential gene ex­
pression was determined with the t test (Welch 
variant) adjusted for multiple comparisons with 
the Benjamini–Hochberg algorithm. An adjusted 
P value of less than 0.1 was considered significant. 
Individual genes were mapped to Gene Ontology 
processes (GeneGo, St. Joseph, MI, http://www.
genego.com/metacore.php) and manually by liter­
ature searches. The gene array data were upload­
ed to GEO Omnibus (reference no. GSE112 260).

Results  The microarray experiments were per­
formed using 17 samples obtained from 8 patients 
with asthma (4 untreated, 4 treated with inhaled 
corticosteroids [ICSs]), 4 patients with COPD (all 
of them smokers, none treated with ICSs), and 
5 controls (4 nonsmokers, 1 smoker). USP53 was 
the only gene differentially expressed (adjusted P 

TABLE 1  Expression of selected genes in macrophage‑dominated cells in induced sputum from patients with asthma 
(without and with inhaled corticosteroid treatment) and chronic obstructive lung disease

Genes Asthma COPD P valuea P valueb

No ICS treatment ICS treatment

AASDH 1.51 (0.20–27.3) 0.3 (0.2–1.39) 0.35 (0.11–2.36) 0.53 0.55

BTF3 1.87 (0.88–84.1) 1.68 (0.49–21.61) 0.25 (0.16–0.5) 0.90 0.001

CDS2 1.59 (0.45–1.93) 2.14 (1.84–3.38) 0.65 (0.56–0.85) 0.49 0.03

COL6A1 0.65 (0.15–1.81) 2.05 (1.35–2.07) 1.98 (0.31–3.72) 0.33 0.50

CUBN 0.29 (0.18–0.34) 0.17 (0.09–1.01) 1.66 (0.44–5.46) 0.69 0.05

DDX5 2.92 (0.84–45.9) 1.58 (0.69–7.87) 0.4 (0.21–0.64) 0.71 0.005

DNAJC13 1.41 (0.74–3 6) 2.51 (1.59–6.48) 0.53 (0.35–0.81) 0.73 0.005

GNAI2 2.15 (0.8–58.8) 2.07 (1.09–4.12) 0.34 (0.19–0.44) 0.90 <0.001

NRG1 1.27 (0.17–2.37) 0.26 (0.01–2.41) 1.38 (1.28–6.09) 0.80 0.20

RAI14 2.85 (0.45–5.91) 0.72 (0.3–4.39) 1.04 (0.28–3.82) 0.54 0.50

RORB 19.89 (0.8–312) 2.34 (0.10–2.74) 0.93 (0.77–2.10) 0.40 0.28

SCGB1A1 1.43 (0.35–5.89) 0.81 (0.12–2.6) 0.07 (0.03–0.08) 0.43 0.002

SIRPB1 1.43 (0.74–3.61) 2.96 (0.95–6.87) 0.53 (0.31–1.13) 0.71 0.01

TRAF3IP2 4.61 (1.38–0.35) 2.02 (0.69–15.06) 0.76 (0.47–1.20) 0.62 0.009

USP53 1.89 (0.88–4.0) 3.07 (1.27–17.28) 0.46 (0.43–1.86) 0.59 0.04

WDR49 1.52 (0.81–2.89) 1.83 (0.49–7.09) 0.16 (0.08–0.88) 0.94 0.01

Results are presented as median and interquartile range. A P value of less than 0.05 was considered significant.

a  Asthma (ICS treatment vs no ICS treatment);     b  COPD vs asthma

Abbreviations: COPD, chronic obstructive lung disease; ICS, inhaled corticosteroid
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caused by the dysfunction of efferocytosis in mac­
rophages. We believe that the results of our study 
may suggest impaired efferocytosis of SMs in ob­
structive lung diseases due to cilia dysfunction.

We are aware of several limitations of this 
study. Firstly, the study group was relatively 
small and only a small number (40%) of samples 
met the appropriate criteria for microarray mea­
surements. The characterization of the gene ex­
pression profile of SMs in study groups revealed 
only one differentiating gene with a satisfacto­
rily adjusted P value. The analyzed subgroups 
of patients were very small, which significantly 
limited inferential statistics. We believe that in 
the face of the limited number of studies using 
sputum cells for microarray experiments in ob­
structive lung diseases, our results are important 
and may be evaluated as a preliminary study. Sec­
ondly, the macrophage isolation was not 100% ef­
ficient and the analyzed material did not contain 
pure fraction of macrophages but also a little con­
tamination of the remaining sputum cells. Per­
haps, the term “macrophage‑dominated materi­
al” would therefore be more appropriate in rela­
tion to our results.

Conclusions  Gene expression profiling of SMs re­
vealed distinct molecular capacity in asthma and 
COPD. We found a link between the gene expres­
sion profile and cell motility, cilium, cell junction, 
and adhesion organization suggesting an associ­
ation of macrophage functions with these biolog­
ical processes in the pathophysiology of obstruc­
tive lung diseases. 

Supplementary material  Supplementary ma­
terial is available with the article at www.pamw.pl.
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