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Introduction  Osteologists, endocrinologists, and 
physicians dealing with metabolic disorders have 
been interested in the relationship between adi‑
pose tissue and bone tissue for a long time. It is 
a complex issue, and this complexity is reflected 
in divergent results concerning the effect of obe‑
sity on bone tissue. It is well known that obese 
perimenopausal women have higher bone miner‑
al density (BMD) compared with normal‑weight 
women. Evaluation of bone turnover markers 
suggests a slower rate of bone metabolism in 
this patient group, and adipose tissue addition‑
ally protects against fractures of the proximal fe‑
mur by cushioning the fall.1 However, other au‑
thors did not confirm the protective effect of obe‑
sity on the development of osteoporosis. They ob‑
served an increased risk of fractures in children 
with higher fat content.2,3 Other investigators 
indicated that menopause involved both an in‑
creased rate of bone loss and increased body fat 
mass.4 Most of the available data confirm that 
adipose tissue exerts an independent effect on 
bone remodeling and contributes to an increase 
in bone mass. Mechanisms accounting for this 
relationship include mechanical load that stim‑
ulates bone formation,5 intensive conversion of 
androgens into estrogens in the adipose tissue,6 

lower serum levels of sex hormone‑binding glob‑
ulin (SHBG) (and thus higher levels of free hor‑
mones),7 increased serum leptin levels,8 increased 
insulin growth factor production, and hyperin‑
sulinemia.9 Despite the essential differences be‑
tween bones and fat, there are also several sim‑
ilarities. Aging affects bone metabolism, caus‑
ing bone deterioration, and increases the prev‑
alence of obesity. Disorders of both tissues are 
caused by genetic and environmental factors. Ad‑
ipose tissue and bone remodeling are regulated 
through the central and peripheral nervous sys‑
tem. Finally, both adipocytes and osteoblasts de‑
rive from the common progenitor/mesenchymal 
stem cells.4,10 All changes occurring in these tis‑
sues result from complex regulatory mechanisms 
associated with genetic factors and the activity 
of the nervous and endocrine systems. Further‑
more, given the fact that adipose tissue secretes 
a number of biologically active substances with 
hormonal activity (adipokines), one can suspect 
their modifying effects on bone cells. The aim 
of this review is to discuss the effect of fat on 
bone tissue.

The effect of body weight on bone tissue  Weight 
gain is associated both with increased bone mass 
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Abstract

The protective effect of obesity on bone tissue has not been unequivocally demonstrated. On one hand, 
it is known that obese people have a lower risk of osteoporotic fractures compared with normal-weight 
individuals. On the other hand, obese patients are characterized by disorders of calcium‑phosphate 
homeostasis and bone metabolism. Moreover, it is not known whether it is fat or lean body mass that 
determines the development of bone mass. It can be assumed that adipose tissue exerts independent 
effects on bone remodeling by releasing a number of biologically active substances. Moreover, it 
seems that the main mechanism of action of these substances is closely related to the type and 
location of adipose tissue in the body. The present article describes the relationship between fat and 
bones, including the effect of body weight on bone tissue, the local mechanisms of osteoblast and 
adipocyte differentiation, and the hormonal activity of adipose tissue.
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type 2 diabetes, only further complicates the is‑
sue. Moreover, there are environmental factors 
that cannot be ignored, such as physical activity, 
which increases bone mass and reduces fat mass 
at the same time. The analysis of peri- and post‑
menopausal periods revealed a natural decrease 
in BMD and an increase in adiposity.

The above proves that the effect of fat on bone 
tissue is still ambiguous – it depends on the meth‑
od of measurement, part of the skeleton exam‑
ined, patient’s age and ethnicity, environmen‑
tal and genetic factors, hormonal status, and 
comorbidities.

Local mechanisms affecting the differentiation of 
osteoblasts and adipocytes in the bone marrow  
As mentioned above, adipocytes and osteoblasts 
derive from the common progenitor/mesenchy‑
mal stem cells. The differentiation is regulated by 
the Wnt/β‑catenin signaling pathways and the ac‑
tivity of peroxisome proliferator‑activated recep‑
tor γ (PPAR‑γ), which act on stem cells in an op‑
posite manner.28‑30 PPAR‑γ enhances mesenchy‑
mal cell differentiation to adipocytes (at the same 
time inhibiting differentiation of osteoblasts), 
while the Wnt signaling pathway favors osteo‑
blastogenesis and inhibits adipocytogenesis. It 
should be stressed that these processes are lim‑
ited to the bone marrow microenvironment.

In animal studies, Kirkland et al.31 found that 
the activity of PPAR‑γ, irrespective of the effect on 
the synthesis of fat cells, was associated with re‑
distribution of body fat and an age‑dependent de‑
crease in bone mass. The authors showed a lower 
expression of PPAR‑γ in subcutaneous adipose tis‑
sue in older individuals and impaired maturation 
of adipocytes and osteoblasts in the bone mar‑
row caused by PPAR‑γ gene mutations. Moerman 
et al.32 suggested that PPAR‑γ might be respon‑
sible for age‑dependent fat accumulation in 
the bone marrow and suppressed production of 
osteoblasts. Takada et al.33 proposed the use of 
PPAR‑γ antagonists as potential factors limiting 
the age‑dependent bone loss and adipogenesis in 
the bone marrow. In an in vitro setting, the au‑
thors observed that the combined treatment of 
PPAR‑γ and interleukin 1 (which suppresses its 
function) inhibited adipogenesis and induced os‑
teoblastogenesis of bone marrow‑derived mesen‑
chymal stem cells.

The Wnt signaling pathway enhances mesen‑
chymal cell differentiation to osteoblasts and 
plays an  important role in inhibiting adipo‑
genesis.30 The inhibitory effect is mediated by 
β‑catenin that suppresses the PPAR‑γ target genes. 
Additionally, low‑density lipoprotein receptor
‑related protein 5 (LRP5) acts as Wnt corecep‑
tors and its mutations are associated with chang‑
es in BMD. Therefore, in humans, in the case of 
a point mutation in the LRP5 gene, higher bone 
mass is observed.34

Endocrine activity of adipose tissue and its effect on 
bone tissue  Estrogens  The association between 

and slower bone mass loss due to aging. This re‑
lationship has been observed both in adults and 
children.11‑13 Postmenopausal women with sim‑
ple obesity without comorbidities are less fre‑
quently diagnosed with osteoporosis. However, 
decreased bone mass is observed in obese wom‑
en suffering from conditions that increase bone 
turnover (rheumatoid arthritis, chronic kidney 
disease).14,15 It is still unknown whether it is fat 
or lean body mass that determines the develop‑
ment of bone mass. The results of studies con‑
cerning this issue are inconsistent. Reid et al.16 
and Douchi et al.17 demonstrated that adipose 
tissue had a protective effect on bone tissue by 
reducing the risk of osteoporosis. Lau et al.18 ob‑
served that men with vertebral deformities had 
lower fat content and lower BMD than controls. 
Finally, Riis et al.19 showed that patients with 
rapid bone loss had significantly lower fat mass 
than those with the normal rate of bone loss. On 
the other hand, Janicka et al.20 observed no pro‑
tective effect of fat on bone loss in young adults, 
and Hsu et al.21 found even a higher risk of os‑
teopenia, osteoporosis, and nonvertebral frac‑
tures in patients with higher fat mass, regard‑
less of body weight.

Other authors assessed the association be‑
tween fat and bone mass in relation to environ‑
mental factors and diet. Reid et al.22 found an in‑
verse relationship between bone mass and body 
fat content in subjects with high physical activ‑
ity. In patients with increased milk intake, in‑
creased bone mass during puberty, inhibited bone 
loss, and reduced incidence of osteoporotic frac‑
tures in older age were observed.23 In addition, 
the consumption of milk (a rich source of calci‑
um) is considered to reduce the risk of obesity. 
It has been proved that increased calcium intake 
promotes reduction of body fat content and pre‑
vents weight gain.24,25

Studies concerning the association between 
obesity and the risk of fractures in relation to age 
showed that obesity was associated with a higher 
risk of forearm fractures in children, but protect‑
ed against hip and wrist fractures in the elderly.26 
The relationship between obesity and the risk of 
fractures seems to depend on ethnicity. It was 
found that obesity was associated with higher 
BMD in a population of white women but lower 
in that of African‑American women.27 However, 
Afghani et al.28 demonstrated an inverse corre‑
lation between subcutaneous fat and bone min‑
eral content (BMC) in white women, but not in 
the African‑American ones. The authors also de‑
scribed an inverse correlation between viscer‑
al adipose tissue and BMC in African‑American 
women, but not in white women.

Because adipose tissue represents only less 
than 40% of total body weight on average, the me‑
chanical load related to increased fat mass may 
be insufficient to explain the effect of fat mass 
on bone tissue.4 Also, the fact that obesity co‑
exists with osteoporosis in certain clinical con‑
ditions, such as the Cushing’s syndrome and 
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insulin levels, thereby reducing its anabolic effect 
(e.g., on bone tissue), and that it could modulate 
the biological activity of several growth factors, 
which might inhibit bone growth.50

The majority of reports have indicated a neg‑
ative effect of adiponectin on bone tissue. Rich‑
ards et al.,51 Jürimäe et al.,52 and Peng et al.53 
showed an inverse correlation between serum ad‑
iponectin and BMD in both women and men. On 
the other hand, a positive correlation with BMD 
(evaluated in distal radius) was observed by Ta‑
mura et al.54 only in patients with type 2 diabe‑
tes. Lower serum levels of adiponectin in obesi‑
ty, its inverse correlation with BMD, and its ef‑
fect on insulin and growth factor levels may par‑
tially explain the protective effect of adiponec‑
tin on bone tissue.

Leptin  The effect of leptin on bone metabolism 
is bidirectional. Both negative and positive cor‑
relations between leptin and BMD have been de‑
scribed in humans.55,56 Leptin is a well‑known fac‑
tor that decreases appetite and increases energy 
expenditure in malnutrition. Unlike adiponec‑
tin, serum leptin levels are increased in obese pa‑
tients compared with normal‑weight individuals. 
Additionally, leptin is an important regulator of 
bone remodeling.57 In vitro studies showed that 
leptin directly affected human marrow stromal 
cells by enhancing differentiation to osteoblasts 
and inhibiting differentiation to adipocytes.58 It 
is postulated that the intravenous administration 
of leptin enhances bone formation59 and inhib‑
its bone resorption.60 However, acting through 
the sympathetic nervous system and cocaine‑am‑
phetamine regulated transcript, leptin inhibits 
bone formation.61

In peri- and postmenopausal women, a positive 
correlation between leptin and BMD and a nega‑
tive with selected markers of bone turnover have 
been observed (dependent on body mass index 
[BMI] and fat content).15,62,63 In postmenopausal 
women with osteoporosis, the above correlations 
are weaker in comparison with healthy women 
in the same age group.64 However, in obese post‑
menopausal women, the correlations between 
leptin and BMD and bone turnover markers are 
stronger (particularly for bone resorption mark‑
ers) than in lean women in the same age group. 
This association is explained by resistance to lep‑
tin in the central nervous system and dispropor‑
tion between leptin levels in serum and cerebro‑
spinal fluid in obese patient (in normal‑weight 
individuals, the cerebrospinal‑fluid/serum lep‑
tin ratio is normal; in obesity, serum leptin lev‑
els are much higher than in the cerebrospinal 
fluid).64‑66 Polish authors suggested a protective 
effect of high leptin levels on bone tissue due to 
the interaction between leptin and the RANKL/
RANK/OPG system.63,67 It was suggested that 
the beneficial effect of leptin on bone tissue was 
a consequence of the inhibited expression of re‑
ceptor activator of nuclear factor-κB ligand and 
increased expression of osteoprotegerin.68

estrogen deficiency and accelerated bone loss has 
been well documented.35 It is known that during 
perimenopause, gonadal failure leads to a gradu‑
al decrease in estrogen levels. In postmenopausal 
women, serum estrogens (estron) levels are par‑
tially maintained due to peripheral aromatization 
of adrenal androstendione.6,36 This process occurs 
both in the adipose tissue and muscles. As a result 
of higher adrenal production of androstenedione 
in obese women, an increased pool of precursors 
for peripheral conversion is observed.37 Siiteri38 
showed (in percentage) an increased conversion 
of androstenedione into estrone in obese wom‑
en compared with normal‑weight women. In ad‑
dition, adrenal dehydroepiandrosterone is con‑
verted to estrone in osteoblasts with the partic‑
ipation of P450 aromatase.36 Aromatase, which 
is responsible for the peripheral conversion, is 
not only produced by gonads, but also by adipo‑
cytes. It enhances the transformation of andros‑
tendione and testosterone into estrogen. Cleland 
et al.39 showed that the activity of aromatase in 
fat cells, which increases with age, was associat‑
ed with the distribution of body fat. Increased 
activity of this enzyme has been demonstrat‑
ed in postmenopausal women.39 Additionally, it 
has been shown that high estrogen levels in bone 
marrow mesenchymal cells stimulates bone for‑
mation and inhibits the differentiation of mesen‑
chymal cells to adipocytes.40 Also, the relationship 
between estrogen levels and the number of fat 
cells have been described. A reduction in endog‑
enous estrogen levels in postmenopausal women 
was accompanied by an increase in the number 
of adipocytes.41 Probably, this process prevents 
from a sudden deficiency of endogenous estro‑
gens in postmenopausal women. Gambacciani 
et al.42 showed that the use of hormone replace‑
ment therapy inhibited the growth of adipose 
tissue. Obese women are characterized by lower 
serum levels of SHBG, and thus higher levels of 
free hormones as compared with normal‑weight 
women.43,44 Increased production of estrogens in 
the adipose tissue is one of the potential mech‑
anisms that account for the protective effect of 
obesity on bone tissue.

Adiponectin  Compared with normal‑weight in‑
dividuals, obese patients have lower serum lev‑
els of adiponectin that increase after weight re‑
duction.45,46 Numerous studies conducted so far 
have not clarified the effect of this adipokine 
on bone metabolism. The experimental studies 
by Berner et al.47 and Jürimäe et al.48 indicated 
a protective effect of adiponectin on bone tissue. 
The studied adipokine favored osteoblastogenesis 
and inhibited osteoclast formation, contributing 
to an increase in bone mass. On the other hand, 
Williams et al.49 demonstrated increased bone 
density in adiponectin‑deficient mice, suggest‑
ing an indirect effect of adiponectin on bone tis‑
sue, probably through modulation of circulating 
growth factor activity or insulin sensitivity. They 
reported that adiponectin decreased circulating 
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observed to increase insulin resistance and inhib‑
it adipocyte differentiation in animals.79 In hu‑
mans, the role of resistin is not entirely clear. Its 
concentration correlates positively with the con‑
tent of subcutaneous and visceral adipose tissue 
as well as fat deposits in the pericardium and aor‑
ta.80 In most studies, no significant correlation 
between serum resistin and insulin resistance has 
been observed.81 The effect of resistin on bone tis‑
sue has been assessed only in a few studies, and 
the results are inconclusive. Thommesen et al.82 
showed that resistin activated both prolifera‑
tion and differentiation of osteoblasts and osteo‑
clasts, thus influencing bone remodeling. In con‑
trast, Oh et al.83 revealed an inverse correlation 
between serum resistin and BMD in the lumbar 
spine. In recent studies conducted in men84 and 
postmenopausal women,77 no significant corre‑
lation between serum resistin and the markers 
of bone turnover and BMD measured in several 
parts of the skeleton has been observed.It seems 
that the main mechanism of action of cytokines 
secreted by the adipose tissue is closely related to 
the site of this tissue. According to Wajchenberg 
et al.,85 adipokines released from visceral adipose 
tissue play an important role in the pathogene‑
sis of cardiovascular diseases and have a greater 
impact on hepatic metabolism of carbohydrates, 
lipids, and hepatic secretion of acute phase pro‑
teins, regardless of their auto- or paracrine ac‑
tions on the adipose tissue. Subcutaneous adipose 
tissue releases primarily adipokines that have 
a protective effect, such as leptin and adiponec‑
tin. Additionally, subcutaneous fat is less sensi‑
tive to glucocorticoids. In 2004, Klein et al.86 as‑
sessed the effect of liposuction on metabolic risk 
factors for coronary heart disease in obese wom‑
en. Reduction of subcutaneous fat did not alter 
insulin sensitivity, serum concentration of adi‑
pokines, or cardiovascular risk. However, in later 
years, a protective effect of subcutaneous fat on 
the development of metabolic risk factors for cor‑
onary heart disease was suggested again. Porter 
et al.,87 analyzing the population of the Framing‑
ham study, found that subcutaneous fat was not 
associated with a linear increase in the prevalence 
of all risk factors among obese patients. As for 
the bone tissue, it seems that mechanical load is 
a more important determinant of bone mass than 
the adipose tissue, irrespective of its location in 
the body.88 An increase in body weight in obese 
subjects is mainly, but not exclusively, a conse‑
quence of increased body fat.

Conclusions  The risk of osteoporotic fractures 
increases in proportion to a decrease in BMI. 
For this reason, obesity is considered as a fac‑
tor protecting against osteoporosis. Obese pa‑
tients have a  lower risk of osteoporotic frac‑
tures compared with normal‑weight individu‑
als. On the other hand, they suffer from disor‑
ders of calcium‑phosphate homeostasis and bone 
metabolism, caused by low physical activity, un‑
balanced diet, and low exposure to ultraviolet 

Interleukin 6  Adipose tissue is responsible for 
the production of ⅓ the amount of interleukin 
6 (IL‑6) in patients without active inflammation. 
In obese individuals, higher IL‑6 levels are ob‑
served compared with normal‑weight subjects.69 
Although IL‑6 is widely recognized as bone re‑
sorption factor, it has also been reported that 
IL‑6 stimulates both proliferation and differen‑
tiation of osteoblasts.70,71 The biological effects 
of IL‑6 strictly depend on the site of action. Cen‑
tral administration has been observed to be asso‑
ciated with increased energy expenditure and de‑
creased body fat in animal model, while periph‑
eral administration induced hyperlipidemia, hy‑
perglycemia, and insulin resistance.72 In addition, 
Franchimont et al.73 demonstrated that IL‑6 was 
an important factor that enhanced bone forma‑
tion in the case of increased bone turnover. On 
the other hand, the authors suggested that be‑
cause the IL‑6‑deficient mice remained healthy 
and showed no changes in bone tissue, IL‑6 might 
not be crucial for bone homeostasis.

Visfatin  Visfatin, also known as pre‑B‑cell 
colony‑enhancing factor, is a newly described 
adipocytokine. Higher visfatin levels are observed 
in obese patients and patients with type 2 diabe‑
tes.74 It was demonstrated that visfatin, due to af‑
finity to insulin receptor (IR), activates the insulin 
signaling pathways (IR, IR substrate [IRS]-1, and 
IRS‑2 phosphorylation; pi3‑K binding to IRS‑1 
and IRS‑2; Akt and MAPK phosphorylation) and 
thus mimics the action of insulin. Visfatin may 
decrease glucose levels with no significant effect 
on insulin concentration.75

Because IR is found in osteoblasts, the ana‑
bolic effect of visfatin on bone tissue seemed 
possible. In 2007, Xie et al.76 demonstrated that 
regulation of glucose uptake, proliferation, and 
type I collagen production by visfatin in human 
osteoblasts involved IR phosphorylation. Visfa‑
tin enhanced bone matrix mineralization, had 
no effect on osteoblast alkaline phosphatase ac‑
tivity, and, surprisingly, downregulated osteo‑
calcin secretion.

However, Zhang et al.77 showed no relationship 
between visfatin and the serum levels of N‑termi‑
nal telopeptides of type I collagen and bone alka‑
line phosphatase. Considering the positive corre‑
lation between fat mass and BMD, it seems that 
visfatin may be just one of many factors influenc‑
ing bone turnover, especially that recent studies 
in postmenopausal women have found no asso‑
ciation between BMD (measured in the femoral 
neck, lumbar spine, and forearm) and serum vis‑
fatin levels.77 Of note, bone marrow cells can dif‑
ferentiate both into osteoblasts and adipocytes. 
Therefore, the paracrine effect of visfatin on os‑
teoblastic cells cannot be excluded.

Resistin  Resistin was described for the first 
time by Steppan et al.78 in 2001 as an adipocyte

‑secreted factor. Its plasma levels increase propor‑
tionally to the degree of obesity. Resistin has been 
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light. The results of the available studies remain 
inconclusive – some suggest that obesity pro‑
tects bone tissue, others report contradictory 
findings. Thus, the protective effect of obesity on 
bone tissue has not been definitely established. 
Perhaps, a long‑term follow‑up of bone meta
bolism in obese people will reveal whether, and 
to what extent, the rate of bone turnover in this 
patient group differs from that observed in nor‑
mal‑weight individuals.
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Streszczenie

Ochronny wpływ otyłości na układ kostny nie został dotąd jednoznacznie potwierdzony. O stopniu 
złożoności problemu świadczą pośrednio rozbieżne wyniki badań dotyczące wpływu otyłości na tkankę 
kostną. Z jednej strony wiadomo, że ryzyko złamań osteoporotycznych u osób otyłych jest mniejsze 
niż u osób o prawidłowej masie ciała. Z drugiej strony, osoby otyłe charakteryzują się zaburzeniami 
gospodarki wapniowo-fosforanowej i przemiany kostnej. Nie wiadomo również, czy to tłuszczowa, 
czy beztłuszczowa masa ciała determinuje kształtowanie się masy kostnej. Można założyć, że tkanka 
tłuszczowa wywiera niezależny wpływ na procesy przebudowy kości, wydzielając liczne substancje 
biologicznie aktywne. Wydaje się również, że pierwotny mechanizm działania tych substancji wiąże się 
ściśle z anatomiczną lokalizacją depozytów tkanki tłuszczowej. W poniższym artykule przedstawiono 
powiązania między tkanką tłuszczową i kostną z uwzględnieniem wpływu masy ciała na tkankę kostną, 
miejscowych mechanizmów wpływających na różnicowanie się osteoblastów i adipocytów oraz 
aktywności hormonalnej tkanki tłuszczowej.
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