Supplementary material

Kryczka KE, Płoski R, Księżycka E, et al. The association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and the plasma fibrinogen level in women and men with premature coronary artery atherosclerosis. Pol Arch Intern Med. 2020; 130: 748-756. doi:10.20452/pamw.15461

Please note that the journal is not responsible for the scientific accuracy or functionality of any supplementary material submitted by the authors. Any queries (except missing content) should be directed to the corresponding author of the article.

		Genotypes				
	II	ID	DD	P	Heterogeneity	
	n=90 (22.1%)	n=194 (47.7%)	n=123 (30.2%)		of sex	
Sex Women	61 (67.7%)	118 (60.8%)	78 (63.4%)		0,53	
Men	29 (32.2%)	76 (39.2%)	45 (36.6%)			
Hypertension	58 (64.4%)	108 (55.7%)	74 (60.2%)	0.36		
Women	45 (73.8%)	76 (64.4%)	52 (66.7%)	0.44	0.48	
Men	13 (44.8%)	32 (42.1%)	22 (48.9%)	0.77		
Diabetes	9 (10.0%)	29 (14.9%)	16 (13.0%)	0.52		
Women	7 (11.5%)	24 (20.3%)	12 (15.4%)	0.30	0.43	
Men	2 (6.9%)	5 (6.6%)	4 (8.9%)	0.92		
Hypercholesterolemia	73 (81.1%)	152 (78.3%)	104(84.5%)	0.39		
Women	48 (78.7%)	93 (78.8%)	68 (87.2%)	0.28	0.40	
Men	25 (86.2%)	59 (77.6%)	36 (80.0%)	0.62		
Family history of	15 (16.7%)	33 (17.0%)	30 (24.4%)	0.21		
cardiovascular diseases						
Women	10 (16.4%)	19 (16.1%)	25 (32.0%)	0.016	0.12	
Men	5 (17.2%)	14 (18.4%)	5 (11.1%)	0.56		
Smoking	61 (67.8%)	150 (77.3%)	92 (74.8%)	0.23		
Women	37 (60.7%)	90 (76.3%)	59 (75.6%)	<u>0.064</u>	0.21	

Table S1. Frequency of categorical traditional risk factors according to the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme gene in women and men

Men	24 (82.8%)	60 (78.9%)	33 (73.3%)	0.61	
Acute coronary syndrome	60 (66.7%)	122 (62.9%)	79 (123%)	0.83	
Women	41 (67.2%)	68 (57.3%)	50 (64.1%)	0.41	0.80
Men	19 (65.5%)	54 (71.0%)	29 (64.4%)	0.72	
ST-segment elevation myocardial infarction	33 (36.7%)	75 (38.7%)	46 (37.4%)	0.94	
Women	22 (36.1%)	44 (37.3%)	27 (34.6%)	0.93	0.96
Men	11 (37.9%)	31 (40.8%)	19 (42.2%)	0.93	

Table S2. Two-way ANOVA of continuous traditional risk factors according to the insertion/deletion (I/D) polymorphism of the angiotensin-converting enzyme gene in women and men

Risk factors mean [95% CI]		Genotypes			
	II	ID	DD	DD+ID+II	P
	n=90 (22.1%)	n=194 (47.7%)	n=123 (30.2%)		Two-way ANOVA, with interaction
Age, years	44.0	45.7	46.0		Genotypes*Sex:
	[43.0-45.0]	[45.1 - 46.4]	[45.2-46.9]		<i>p</i> =0.085
Women	48.9	49.9	49.4	49.4 [48.8-50.0]	Sex: <i>p</i> <0.001
	[47.7-50.0]	[49.1-50.7]	[48.4-50.5		Genotypes: $p=0.006$;
Men	39.1	41.6	42.6	41.1 [40.3-41.9]	ID vs II: 0.015
	[37.4-40.8]	[40.6-42.6]	[41.3-44.0]		
Body mass	28.3	28.1	27.7		
index, kg/m ²	[27.3-29.4]	[27.3-28.8]	[26.8-28.6]		C*9
Women	20 4	20.1	27.0	07 0 [07 0 00 5]	Genotypes*Sex: p=0.35
women	28.4	28.1	27.0	27.8 [27.2-28.3]	Sex: <i>p</i> =0.43
	[27.1-29.0]	[27.2-29.0]	[25.9-28.1]	00 2 [27 4 20 1]	Genotypes:p=0.71
Men	28.3	28.0	28.5	28.3 [27.4-29.1]	
TT' 1 '/'	[26.5-30.1]	[26.9-29.1]	[27.0-29.9]		
High-sensitive	0.21	0.21	0.23		
C-reactive	[0.12-0.52]	[0.11-0.50]	[0.10-0.45]		Genotypes*Sex:
protein, ing/di					p=0.085
Women	0.18	0.26	0.23	0.23	Sex: <i>p</i> =0.91
	[0.11-0.51]	[0.12-0.62]	[0.09-0.55]	[0.11 - 0.55]	Genotypes: p=0.27
Men	0.26	0.17	0.21	0.19	
	[0.15-0.85]	[0.09 -0.32]	[0.12 -0.62]	[0.10 -0.38]	
White blood	10.3	9.5	10.2		Genotypes*Sex:

cells, K/ul	[7.5-13.3]	[7.1-12.9]	[7.7-13.5]		<i>p</i> =0.22 Sex: <i>p</i> < 0.001
Women	10.4	8.9	10.0	9.2	Genotype: $p=0.29$;
	[7.0-12.9]	[6.9-11.4]	[7.4 - 12.4]	[7.0 - 12.25]	ID.
Men	9.9	11.75	10.9	11.35	Men vs women:
	[8.8-13.4]	[8.6-14.4]	[8.6 - 14.5]	[8.6 - 14.4]	<i>p</i> <0.001

Table S3. Mean fibrinogen level according to presence of traditional cardiovascular risk factors

Fibrinogen, mg/dl								
Mean (standard deviation)								
Risk factor	Risk factor presents	Risk factor absents	P					
Male sex	391.5 (161.2)	534.5 (180.9)	<0.001					
Hypertension	488.3 (180.9)	472.4 (195.8)	0.40					
Women	530.79 (173.68)	542.09 (195.84)	0.64					
Men	378.63 (151.34)	401.97 (169.76)	0.38					
Diabetes	482.0 (188.5)	481.8 (187.1)	0.99					
Women	525.32 (181.20)	536.33 (181.23)	0.72					
Men	312.72 (104.53)	397.79 (164.01)	0.93					
Hypercholesterolemia	485.3 (182.8)	467.2 (204.6)	0.44					
Women	532.98 (173.45)	541.03 (212.33)	0.78					
Men	402.17 (169.12)	349.05 (120.90)	0.053					
Family history of cardiovascular	511.7 (184.3)	474.7 (187.3)	0.12					
diseases								
Women	557.29 (182.84)	528.42 (180.37)	0.30					
Men	409.16 (144.26)	388.19 (165.12)	0.56					
Smoking	492.3 (189.8)	451.1 (176.2)	0.045					
Women	557.28 (183.88)	474.76 (159.18)	0.001					
Men	389.11 (149.56)	400.20 (201.35)	0.73					
Menopause Women	532.67 (188.69)	538.36 (164.13)	0.82					
Menopause Women	507.67 (156.38)	552.77 (209.76)	0.12					
early \leq 3 years			Late vs lack of menopause p=0.61					
(vs late > 3 years)			Early vs lack of menopause p=0.23					

Table S4. ANCOVA of different models tested. Dependent value: fibrinogen, mg/dl

Model's factors	Factors and interactions tested, p	Covariance:
		age, p
	Two -way ANCOVA with interactions, p	

I/D genotypes, sex, I/D genotypes * sex	I/D genotypes: 0.61; sex: <0.001, I/D genotypes * sex: 0.022	0.11
I/D genotypes, hypertension, I/D genotypes * NT	I/D genotypes: 0.75; hypertension: 0.77, I/D genotypes * hypertension: 0.37	<0.001
I/D genotypes, diabetes, I/D genotypes * diabetes	I/D genotypes: 0.71; diabetes: 0.52, I/D genotypes * diabetes: 0.89	<0.001
I/D genotypes, hypercholesterolemia, I/D genotypes * hypercholesterolemia	I/D genotypes: 0.82; hypercholesterolemia: 0.70; I/D genotypes * hypercholesterolemia: 0.70	<0.001
I/D genotypes, family history of CVD, I/D genotypes * family history of CVD	I/D genotypes:0.20; family history of CVD: 0.16; I/D genotypes * family history of CVD: 0.06	<0.001
I/D genotypes, smoking, I/D genotypes * smoking	I/D genotypes: 0.23; smoking:0.03 ; I/D genotypes * smoking: 0.10	<0.001
	Three-way ANCOVA with interactions, p	
I/D genotypes, sex, smoking, I/D genotypes * sex, I/D genotypes * smoking	I/D genotypes: 0.30; sex: <0.001, smoking: 0.03, I/D genotypes* sex: 0.019, I/D genotypes * smoking: p=0.057	0.19

CVD: cardiovascular diseases, I/D: insertion/deletion polymorphism of the angiotensin-converting enzyme

 Table S5. Significant differences in fibrinogen levels across genotypes- adjustment for multiple comparison: Bonferroni correction

Comparison		Difference [95% CI]	Р
DD Women	DD Men	208.6 [102.2; 314.9]	<0.001
	ID Men	176.2 [70.7 ; 281.6]	<0.001
	II Men	217.1 [79.1 ; 355.0;]	<0.001
	ID Women	83 [2.7 ; 165.3]	0.036
II Women	II Men	160.4 [28.2; 292.6]	0.01
	ID Men	119.5 [16.0; 223.0]	0.01
	DD Men	151.9 [40.9; 262.9]	0.001

ID Women	DD Men	124.6 [17.0; 232.1]	0.01						
Insignificant differences of fibrinogen levels across genotypes- adjustment for multiple									
comparison: Bonferroni									
ID Women	II Men	133.1 [-1.4 ; 267.5]	0.055						
	ID Men	92.2 [-2.6 ; 186.8]	0.06						
ID Men	DD Men	32.4 [-68.5; 133.3]	1.0						
II Women	ID Women	27.3 [-56.5; 111.3]	1.0						
	DD Women	-55.7 [-147.8 ; 34.6]	1.0						
II Men	ID Men	-40.9 [-160.3 ; 78.5]	1.0						
	DD Men	-8.5 [-138.0 ; -121.0]	1.0						

DD: dominant homozygote, ID: heterozygote, II: recessive homozygote of the I/D polymorphism of the angiotensin-converting enzyme gene

<u>The optimal subject-level gene model assessment</u> based on Horita N, Kaneko T. Genetic model selection for a case-control study and a meta-analysis. Meta Gene 5 (2015) 1–8

	1	1									
				Odds Ra	atio	OR [95% CI]				Optimal	
		Genotype			(OR)		Four models:				model
	Fibringgen				[95% C]	[]					
					ID vs	II vs	RE	Multi	DO	OV	
	mg/di	п	Б	DD	DD	ID	ʻII' vs	'ID*II'	'II+ID'	'ID' vs	
		ш	ID	עט			'ID+DD	vs 'DD'	vs 'DD'	'DD+II'	
							,				
Women	>Median	27	50	50							Dominant
	(526)	(44.3)	(42.4)	(64.1)	11 0.74])8 2.01]	76 1.36]	55 0.92]	12 0.73]	59 0.97]	
	\leq Median	34	68	28	0.4	1.(.58-	0.7	0.6	0.4	0.5	
	(526)	(55.7)	(57.6)	(35.9)	0	0]	0]	0]	<u>e</u>	0]	
		•		Р	0.003	0.809	0.356	0.012	0.002	0.037	
Men	> Median	15	44	16	_	_	_	_	_	_	Dominant
	(357.5)	(51.7)	(57.9)	(35.6)	19 5.34	78 1.84)9 2.45	48 2.37	32 4.78)1 3.65	
	\leq Median	14	32	29	2.′	0.7	1.(.48-	1.∠ .92-	2. 13-	1.5	
	(357.5)	(48.3)	(42.1)	(64.4)	E	0]	0]	0]			
				Р	0.017	0.569	0.836	0.099	0.020	0.050	

Table S6. Four model strategy for women and men

Models: RE: recessive, Multi: multiplicative, DO: dominant, OV: over-dominant; II: recessive homozygote, ID: heterozygote, DD: dominant homozygote of the insertion/deletion polymorphism of angiotensin converting enzyme gene

ANCOVA for dominant model. Dependent value: fibrinogen (mg/dl); factors: I/D genotype, sex, smoking; covariance: age. Results: ID+II: 0.25, sex: <0.001, smoking: 0.54, sex * (ID+II): 0.013, sex* smoking: 0.038, (ID+II)*smoking: 0.028

Figure S1. Four model strategy with optimal dominant model signed for women and men with premature coronary artery disease (logarithmic scale OR plane).

II: recessive homozygote, ID: heterozygote, DD: dominant homozygote of the insertion/deletion polymorphism of the angiotensin-converting enzyme gene

F: female; M: male

OR: odds ratio

The List of reagents for laboratory tests:

Lipids:

- Total cholesterol –Roche CHOL2 reagent, Cobas 6000 analyzer, enzymatic colorimetric method;
- High-density lipoprotein (HDL) cholesterol –Roche HDL4 reagent, Cobas 6000 analyzer, homogenous enzymatic colorimetric method;
- Low-density lipoprotein (LDL) cholesterol Roche LDL3 reagent, Cobas 6000 analyzer, homogenous enzymatic colorimetric method;
- Triglycerides Rosche TRIGL reagent, Cobas 6000 analyzer, homogenous enzymatic colorimetric method;

Glucose: Roche GLUC3 reagent, Cobas 6000 analyzer, hexokinase reference enzymatic method;

High-sensitive C-reactive protein (hs CRP): Roche CRPHS reagent, Cobas 6000 analyzer, latex-enhanced immunoturbidimetric method

Fibrinogen: SIEMENS "Multifibren® U" reagent, BCS analyzer, modified Clauss method;

Morphology:

- SYSMEX XN-1000 PURE Analyzer
- Reagents:
 - ✓ Lysercell WDF
 - ✓ Cellpack DCL
 - ✓ Sulfolyser
 - ✓ Fluorocell WDF

- ✓ Fluorocell WNR
- ✓ Lycercell WNR
- Methods:
 - ✓ Flow cytometry (White blood cells)