Supplementary material

Szarpak Ł, Nowak B, Kosior D, et al. Cytokines as predictors of COVID-19 severity: evidence from a meta-analysis. Pol Arch Intern Med. 2021; 131: 98-99. doi:10.20452/pamw.15685

Please note that the journal is not responsible for the scientific accuracy or functionality of any supplementary material submitted by the authors. Any queries (except missing content) should be directed to the corresponding author of the article.

CYTOKINES AS PREDICTORS OF COVID-19 SEVERITY – EVIDENCE FORM A META-ANALYSIS

Supplementary digital file

CONTENT:

CHARACTERISTICS OF A META-ANALYSIS CONDUCTING PROCESS
SUPPLEMENTARY TABLE 1. CHARACTERISTICS OF INCLUDED STUDIES REPORTING CYTOKINES IN SEVERE AND NON-SEVERE GROUPS 5
SUPPLEMENTARY TABLE 2. SUMMARY OF CYTOKINES LEVELS IN SEVERE VS. NON-SEVERE GROUPS
SUPPLEMENTARY TABLE 3. CHARACTERISTICS OF INCLUDED STUDIES REPORTING CYTOKINES IN ICU AND NON-ICU GROUPS
SUPPLEMENTARY TABLE 4. SUMMARY OF CYTOKINES LEVELS IN SEVERE VS. NON-SEVERE GROUPS
SUPPLEMENTARY TABLE 5. CHARACTERISTICS OF INCLUDED STUDIES REPORTING CYTOKINES IN SURVIVORS VS. NON-SURVIVORS
GRUPUS
SUPPLEMENTARY TABLE 6. SUMMARY OF CYTOKINES LEVELS IN SURVIVORS VS. NON-SURVIVORS GROUPS
REFERENCES

Characteristics of a meta-analysis conducting process

This trial was conducted in accordance with the MOOSE guidelines for reporting of systematic reviews and meta-analyses of observational studies. No institutional review board approval was required because all study data had been published previously and this study did not include individual patient data.

Search strategy

All candidate studies were initially identified by conducting a systematic review of online databases, namely MEDLINE, Web of Science, Embase, PubMed (non-MEDLINE records only), Cochrane Library, EBSCO CINAHL Complete, medRxiv and bioRxiv from databases inception until 27 October 2020. We used the following search terms: "COVID-19" OR "COVID" OR "SARS-CoV-2" OR "Coronavirus" AND "cytokin*" OR "interleukin*" OR "IL".

Selection criteria/eligibility

Patients, 18 years of age or older, diagnosed with COVID-19 were eligible for inclusion. We restricted data to studies published in English language.

Data extraction

Three authors (L.S., D.K., M.J.J.) will independently conduct data abstraction using a data extraction form developed by all the review authors. The data extraction form contains study authors, year of publication, country, study design, number of participants, age, sex, type of cytokine, and cytokines levels.

Quality assessment

Two reviewers (L.S. and M.J.J.) independently extracted individual study data and evaluated studies for risk of bias using a previously piloted standardized form and the Newcastle-Ottawa scale [1].

Statistical analysis

Data synthesis and statistical meta-analysis (when possible) were carried out using Cochrane Review Manager software v.5.4 (The Cochrane Collaboration, Oxford, Copenhagen, Denmark). Outcomes were summarized using the Mantel-Haenszel Risk Ratios (RRs) or Mean Differences (MDs). All results are presented with their 95% confidence interval (CI). When the continuous outcome was reported in a study as median, range, and interquartile range, we estimated means and standard deviations using the formula described by Hozo et al. [2]. Heterogeneity was assessed statistically using I² (no heterogeneity, I² = 0–25%; moderate heterogeneity, I² = 25–50%; large heterogeneity, I² = 50–75%; extreme heterogeneity, I² = 75–100%) [3]. The random effects model was used for I² > 50%; otherwise, the fixed effects model was employed. P < 0.05 was taken to indicate statistical significance. Statistical testing was 2 tailed.

References:

1. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011; 343: d5928. doi: 10.1136/bmj.d5928.

- 2. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005; 5:13, indexed in Pubmed: 15840177.
- 3. Safiejko K, Smereka J, Filipiak KJ, et al. Effectiveness and safety of hypotension fluid resuscitation in traumatic hemorrhagic shock: a systematic review and meta-analysis of randomized controlled trials. Cardiol J. 2020 Jul 10. doi: 10.5603/CJ.a2020.0096.

Chudu	Country	Chudu daalaa	SEVERE GROUP			NON-SEVERE GROUP		
Study	Country	Study design	No.	Age	Sex, male	No.	Age	Sex, male
Cai Q. et al. 2020	China	Retrospective cohort study	58	61.8 ± 2.9	39 (67.2)	240	42.3 ± 4.2	106
Chen L.D. et al. 2020	China	Retrospective cohort study	25	60.7 ± 15.2	15 (60.0)	69	51.4 ± 15.8	34 (49.3)
Chen R. et al.	China	Retrospective cohort study	203	58.9 ± 13.3	131 (64.5)	345	67.3 ± 12.1	182 (52.8)
Chen X. et al. 2020	China	Retrospective cohort study	27	73.8 ± 15.4	24 (88.9)	21	52.8 ± 14.2	13 (61.9)
Gao Y. et al. 2020	China	Retrospective cohort study	15	45.2 ± 7.7	9 (60.0)	28	43 ± 14.0	17 (60.7)
Guirao J.J. et al. 2020	Spain	Retrospective cohort study	6	64.5 ± 2.3	5 (83.3)	44	63.4 ± 4.51	36 (81.1)
Gunder R. et al. 2020	Turkey	Retrospective cohort study	50	62.2 ± 11.9	33 (66.0)	172	47.7 ± 16.1	99 (57.6)
Huang H. et al. 2020	China	Retrospective cohort study	21	61.4 ± 16.4	12 (57.1)	43	41.2 ± 15.7	25 (58.1)
Li S. et al. 2020	China	Retrospective cohort study	26	59.0 ± 8.7	14 (53.8)	43	40.0 ± 6.9	26 (60.5)
Li T. et al. 2020	China	Retrospective study	105	71.3 ± 4.6	67 (63.8)	207	67.1 ± 5.4	120 (58.0)
Liao D. et al. 2020	China	Retrospective cohort study	231	67.8 ± 3.0	137 (59.3)	149	55.3 ± 4.3	69 (46.3)
Liu F. et al. 2020	China	Retrospective cohort study	33	76.8 ± 6.3	8 (24.2)	107	61.3 ± 4.9	41 (38.3)

Supplementary Table 1. Characteristics of included studies reporting cytokines in severe and non-severe groups

Liu J. et al. 2020	China	Retrospective cohort study	13	59.7 ± 10.1	7 (53.8)	27	43.2 ± 12.3	8 (29.6)
Liu L. (a) et al. 2020	China	Retrospective single center	92	62.8 ± 2.8	62 (67.4)	202	50.8 ± 4.7	100 (49.5)
Liu L. (b) et al. 2020	China	Cohort study	7	52 ± 4.6	4 (57.1)	44	42.5 ± 4.6	28 (63.7)
Liu T. et al. 2020	China	Retrospective study	69	56.3 ± 10	33 (47.8)	11	36.5 ± 9.3	1 (9.1)
Lv Z. et al. 2020	China	Retrospective cohort study	239	61.1 ± 10.4	117 (49.0)	115	56.0 ± 16.2	58 (50.4)
Qin C. et al. 2020	China	Retrospective study	286	60.5 ± 3	155 (54.2)	166	52.3 ± 6	80 (48.2)
Sheng L. et al. 2020	China	Retrospective study	130	72.4 ± 5.7	NS	102	63 ± 3	NS
Sun Y. et al. 2020	China	Cohort study	19	59.4 ± 13.7	NS	44	42.3 ± 19.6	NS
Tian R et al. 2020	China	Retrospective single center	45	63.8 ± 4.3	26 (57.8)	45	63.8 ± 3.2	22 (50.0)
Xie Y. et al. 2020	China	Retrospective study	24	71.9 ± 6.8	13 (54.2)	38	60.1 ± 7.5	14 (36.8)
Xu X. et al. 2020	China	Retrospective single center	41	63.2 ± 14.4	15 (36.6)	47	52.49 ± 14.62	21 (44.7)
Xu Y. et al. 2020	China	Retrospective, multi- center case series	25	67.8 ± 5.3	13 (52.0)	44	48.5 ± 6.9	22 (50.0)
Yang Y. et al. 2020	China	Retrospective single center	34	60.8 ± 9.2	22 (64.7)	19	50.5 ± 16.2	9 (47.4)
Yuan J. et al. 2020	China	Retrospective single center	11	56.8 ± 9.2	5 (45.5)	83	37.9 ± 22	37 (44.6)
Zeng Z. et al. 2020	China	Retrospective study	224	62.7 ± 4.8	121 (54.0)	93	58.1 ± 3.8	41 (44.1)

Zhang Q. et al. 2020	China	Retrospective single center	27	70.8 ± 6.6	18 (66.7)	47	60.8 ± 3.7	18 (38.3)
Zhu Z. et al. 2020	China	Retrospective study	16	57.5 ± 11.7	9	111	50.0 ± 15.5	73

Legend: NS = Not specified.

Cytokine type	No. of studies	MD (95%CI)	P - value	I ² statistic
Tumor necrosis factor, TNF	8	0.74 [0.22, 1.26]	0.005	99%
Interleukin-1β	3	0.12 [-0.15, 0.39]	0.38	91%
Interleukin-2R	8	206.97 [161.49, 252.44]	<0.001	100%
Interleukin-4	4	0.21 [-0.08, 0.50]	0.16	95%
Interleukin-6	24	21.90 [17.64, 26.16]	<0.001	99%
Interleukin-8	5	5.91 [4.03, 7.80]	<0.001	95%
Interleukin-10	7	1.51 [1.00, 2.02]	<0.001	97%
Interleukin-17	1	-0.40 [-0.74, -0.06]	0.02	NA
Interferon- γ	4	0.17 [-0.34, 0.69]	0.51	92%

Supplementary table 2. Summary of cytokines levels in severe vs. non-severe groups.

Legend: CI = Confidence interval; MD = Mean difference; NA = Not applicable.

Chudu	Country	Study design	ICU GROUP			NON-ICU GROUP		
Study	Country	Study design	No.	Age	Sex, male	No.	Age	Sex, male
Guirao J.J. et al. 2020	Spain	Cohort study	8	62.1 ± 2.8	7 (87.5)	42	63.8 ± 1.8	34 (80.9)
Liu S-p. et al. 2020	China	Retrospective study	41	63 ± 13	28 (71.8)	214	61 ± 11.3	108 (50.9)
Maeda T. et al. 2020	USA	Single-center Retrospective study	57	67 ± 5.2	31 (54.4)	167	64.5 ± 4.3	96 (57.5)
Monaldi M.V. et al. 2020	Italy	Observational study	10	73 ± 7.4	8 (80.0)	18	47 ± 12.6	8 (44.4)

Supplementary Table 3. Characteristics of included studies reporting cytokines in ICU and non-ICU groups

Supplementary table 4. Summary of cytokines levels in severe vs. non-severe groups.

Cytokine type	No. of studies	MD (95%CI)	P - value	I ² statistic
Tumor necrosis factor, TNF	1	-7.92 [-11.92, -3.93]	<0.001	NA
Interleukin-6	4	85.75 [30.01, 141.49]	<0.001	90%
Interleukin-8	1	-10.30 [-34.71, 14.11]	0.41	NA
Interleukin-10	1	8.62 [3.45, 13.80]	0.001	NA

Legend: CI = Confidence interval; MD = Mean difference; NA = Not applicable.

Study	Country	Study docign	Non-Survivors	GROUP		Survivors GRO	OUP	
Country	Study design	No. Age Sex, male		No.	Age	Sex, male		
Almaghlouth N.K. et al. 2020	USA	Cohort study	7	NS	2 (28.6)	73	NS	43 (58.9)
Chen R. et al.	China	Retrospective study	103	66.9 ± 12.1	69 (67.0)	445	53.5 ± 13.9	244 (54.8)
Chen T.L. et al.	China	Case series	19	77	16 (84.2)	36	72	18 (50.0)
Garcia P.D.W. et al. 2020	Italy	Cohort study	97	70.5 ± 2.7	69 (71.1)	301	62 ± 2.7	231 (76.7)
Guirao J.J. et al. 2020	Spain	Cohort study	14	69.0 ± 3.1	11 (78.6)	36	61.4 ± 1.7	30 (83.3)
Laguna-Goya R. et al. 2020	Spain	Prospective cohort	36	64.8 ± 3.8	25 (69.4)	465	51.5 ± 2.3	292 (62.9)
Luo M. et al. 2020	China	Multicenter retrospective cohort	201	69.5 ± 2.7	133 (66.2)	817	56.5 ± 3.3	388 (47.5)
Sheng L. et al. 2020	China	Retrospective study	88	74.8 ± 2.2	NS	42	67.5 ± 7.5	NS

Supplementary Table 5. Characteristics of included studies reporting cytokines in survivors vs. non-survivors grupus.

Legend: NS = Not specified.

Supplementary table 6. Summary of cytokines levels in survivors vs. non-survivors groups.

Cytokine type	No. of studies	MD (95%CI)	P - value	I ² statistic
Tumor necrosis factor, TNF	1	-4.35 [-4.58, -4.11]	<0.001	NA
Interleukin-2R	2	-548.08 [577.12, -519.04]	<0.001	99%
Interleukin-6	8	-2.57 [-2.79, -2.36]	<0.001	100%
Interleukin-8	1	-20.43 [-21.35, -19.51]	<0.001	NA

Interleukin-10	1	-4.35 [-4.58, -4.11]	<0.001	NA
----------------	---	----------------------	--------	----

Legend: CI = Confidence interval; MD = Mean difference; NA = Not applicable.

References

- Almaghlouth NK, Davis MG, Davis MA, et al. Risk factors for mortality among patients with SARS-CoV-2 infection: A longitudinal observational study. J Med Virol. 2020 Sep 28:10.1002/jmv.26560. doi: 10.1002/jmv.26560.
- **Cai Q**, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy. 2020; 75(7):1742-1752. doi: 10.1111/all.14309.
- **Carlino MV**, Valentu N, Cesaro F, et al. Predictors of Intensive Care Unit admission in patients with coronavirus disease 2019 (COVID-19). Monaldi Arch Chest Dis. 2020 Jul 15;90(3). doi: 10.4081/monaldi.2020.1410.
- **Chen LD**, Zhang ZY, Wei XJ, et al. Association between cytokine profiles and lung injury in COVID-19 pneumonia. Respir Res. 2020; 21(1):201. doi: 10.1186/s12931-020-01465-2.
- **Chen R**, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020; 146(1):89-100. doi: 10.1016/j.jaci.2020.05.003.
- **Chen TL**, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020; 75(9):1788-1795. doi: 10.1093/gerona/glaa089.
- **Chen X**, Zhao B, Qu Y, et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis. 2020 Apr 17;ciaa449. doi: 10.1093/cid/ciaa449.
- **Gao Y**, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020; 92(7):791-796. doi: 10.1002/jmv.25770. Clin Infect Dis. 2020 Apr 17;ciaa449. doi: 10.1093/cid/ciaa449.
- **Garcia PDW**, Fumeaux T, Guerci P, et al. Prognostic factors associated with mortality risk and disease progression in 639 critically ill patients with COVID-19 in Europe: Initial report of the international RISC-19-ICU prospective observational cohort. EClinicalMedicine. 2020; 25:100449. doi: 10.1016/j.eclinm.2020.100449.
- **Guirao JJ**, Cabrera CM, Jiménez N, Rincón L, Urra JM. High serum IL-6 values increase the risk of mortality and the severity of pneumonia in patients diagnosed with COVID-19. Mol Immunol. 2020; 128:64-68. doi: 10.1016/j.molimm.2020.10.006.
- **Gunder R**, Hasanoglu I, Kayaaslan B, et al. COVID-19 experience of the major pandemic response center in the capital: results of the pandemic's first month in Turkey. Turk J Med Sci. 2020 Jul 19. doi: 10.3906/sag-2006-164.
- Huang H, Song B, Xu Z, et al. Predictors of coronavirus disease 2019 severity: A retrospective study of 64 cases. Jpn J Infect Dis. 2020 Aug 1. doi: 10.7883/yoken.JJID.2020.298.
- Laguna-Goya R, Utrero-Rico A, Talayero P, et al. IL-6-based mortality risk model for hospitalized patients with COVID-19. J Allergy Clin Immunol. 2020; 146(4):799-807.e9. doi: 10.1016/j.jaci.2020.07.009.
- Li S, Jiang L, Lin D, et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 2020; 5(12):e138070. doi: 10.1172/jci.insight.138070.
- Li T, Lu L, Zhang W, et al. Clinical characteristics of 312 hospitalized older patients with COVID-19 in Wuhan, China. Arch Gerontol Geriatr. 2020; 91:104185. doi: 10.1016/j.archger.2020.104185.

- Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol. 2020;7(9):e671-e678. doi: 10.1016/S2352-3026(20)30217-9.
- Liu F, Li L, Xu MD, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020; 127:104370. doi: 10.1016/j.jcv.2020.104370.
- Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020; 55:102763. doi: 10.1016/j.ebiom.2020.102763.
- Liu L (a), Zheng Y, Cai L, et al. Neutrophil-to-lymphocyte ratio, a critical predictor for assessment of disease severity in patients with COVID-19. Int J Lab Hematol. 2020 Oct 25. doi: 10.1111/ijlh.13374.
- Liu L (b), Gao J-Y, Hu W-m, et al. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. MedRxiv 2020; doi: 10.1101/2020.02.20.20025536.
- Liu S-P, Zhang Q, Wang W, et al. Hyperglycemia is a strong predictor of poor prognosis in COVID-19. Diabetes Res Clin Pract. 2020; 167:108338. doi: 10.1016/j.diabres.2020.108338.
- Liu T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019. MedRxiv 2020; doi: 10.1101/2020.03.01.20029769v2.
- Luo M, Liu J, Jiang W, et al. IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital mortality of patients with COVID-19. JCI Insight. 2020 Jul 9;5(13):e139024. doi: 10.1172/jci.insight.139024.
- Lv Z, Cheng S, Le J, et al. Clinical characteristics and co-infections of 354 hospitalized patients with COVID-19 in Wuhan, China: a retrospective cohort study. Microbes Infect. 2020; 22(4-5):195-199. doi: 10.1016/j.micinf.2020.05.007.
- **Maeda T**, Obata R, Rizk D, Juno T. The association of interleukin-6 value, interleukin inhibitors, and outcomes of patients with COVID-19 in New York City. J Med Virol. 2020 Jul 28. doi: 10.1002/jmv.26365.
- Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020; 71(15):762-768. doi: 10.1093/cid/ciaa248.
- Sheng L, Wang X, Tang N, Meng F, Huang L, Li D. Clinical characteristics of moderate and severe cases with COVID-19 in Wuhan, China: a retrospective study. Clin Exp Med. 2020; 1-5. doi: 10.1007/s10238-020-00662-z.
- Sun Y, Dong Y, Wang L, et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoimmun. 2020; 112:102473. doi: 10.1016/j.jaut.2020.102473.
- **Tian R**, Wu W, Wang C, et al. Clinical characteristics and survival analysis in critical and non-critical patients with COVID-19 in Wuhan, China: a single-center retrospective case control study. Sci Rep. 2020; 10(1):17524. doi: 10.1038/s41598-020-74465-3.
- Xie Y, You Q, Wu C, et al. Impact of Cardiovascular Disease on Clinical Characteristics and Outcomes of Coronavirus Disease 2019 (COVID-19). Circ J. 2020; 84(8):1277-1283. doi: 10.1253/circj.CJ-20-0348.
- Xu X, Yu MQ, Shen Q, et al. Analysis of inflammatory parameters and disease severity for 88 hospitalized COVID-19 patients in Wuhan, China. Int J Med Sci. 2020; 17(13):2052-2062. doi: 10.7150/ijms.47935.

- Xu Y, Li Y-r, Zeng Q, et al. Clinical Characteristics of SARS-CoV-2 Pneumonia Compared to Controls in Chinese Han Population. MedRxiv 2020; doi: 10.1101/2020.03.08.20031658v1.
- Yang Y, Shen C, Li J, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. MedRxiv 2020; doi: 10.1101/2020.03.02.20029975v1.
- Yuan J, Zou R, Zeng L, et al. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm Res. 2020; 69(6):599-606. doi: 10.1007/s00011-020-01342-0.
- Zeng Z, Yu H, Chen H, et al. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit Care. 2020; 24(1):525. doi: 10.1186/s13054-020-03255-0.
- **Zhang Q**, Wei Y, Chen M, Wan Q, Chen X. Clinical analysis of risk factors for severe COVID-19 patients with type 2 diabetes. J Diabetes Complications. 2020; 34(10):107666. doi: 10.1016/j.jdiacomp.2020.107666.
- **Zhu Z**, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020; 95:332-339. doi: 10.1016/j.ijid.2020.04.041.