A 75-year-old man was admitted to an emergency department, complaining of chest pain persisting for 7 hours. The 12-lead electrocardiogram (ECG) showed ST-segment elevations in leads V_4 through V_6 and decreased R waves in leads V_1 through V_3 (Figure 1A, Day 0), compared with the past ECG (Figure 1A, Past), which suggested anterior acute myocardial infarction (AMI). Transthoracic echocardiography (TTE) demonstrated a severely hypokinetic anterior left ventricular (LV) wall, especially in the apex, and a hyperkinetic basal inferolateral LV wall (Figure 1B and 1C). On hospital admission, laboratory tests showed a white blood cell count of 10.1×10^3/mm3, creatine kinase level of 1278 IU/l, creatine kinase–MB level of 165.4 IU/l, troponin T level >2000 ng/l, and brain natriuretic peptide level of 150 pg/ml. Emergency coronary angiography revealed a 99% stenosis of the proximal left anterior descending artery (Figure 1D) without significant stenoses in the other epicardial coronary arteries. After stent implantation, grade 3 Thrombolysis in Myocardial Infarction flow was achieved (Supplementary material, Figure S1). Follow-up ECGs showed negative T waves with QT prolongation in leads V_2 through V_6 on Day 2, which improved within several days (Figure 1E). Giant negative T waves with QT prolongation re-emerged in leads V_4 through V_6 on Day 13 and gradually disappeared over 90 days. The exact values of the corrected QT interval on days 0, 2, and 90 were 0.39, 0.68, and 0.4 s, respectively. Serial TTE showed a notable improvement of anterior LV wall motion on day 3 and almost no asynchrony on day 14 (Supplementary material, Figure S1). On dual scintigraphy combined with computed tomography on day 6, the 123I-β-methyl-iodophenyl pentadecanoic acid images showed more extensive myocardial metabolic abnormalities (Figure 1E) compared with the 201thallium images (Figure 1F). This patient might have complicated takotsubo syndrome (TTS) after anterior AMI for the following reasons. First, the serial ECG changes could not be explained by anterior AMI alone, while resurgent giant negative T waves at 2 to 3 weeks were typical of TTS. Compared with the previous ECG, the ECG on admission showed ST-segment elevations in inferior leads and absence of ST-segment depressions except in lead aVR, which were more often observed in TTS than in anterior AMI. Second, the biomarkers of myocardial ischemia were disproportionately low, considering the wide range of myocardial injury detected by scintigraphy. Third, TTE showed that the asynchrony observed in the anterior wall rapidly improved within 14 days. According to the InterTAK criteria, the score in this patient was calculated as 42, which indicated that he was diagnosed with TTS with a 89% sensitivity and a 91% specificity.
the perfusion–metabolism mismatch reflects the metabolically impaired but viable myocardial area after AMI, scintigraphic imaging, in this case, was consistent with the subsequent functional recovery observed on serial TTE, although this mismatch is not specific for TTS. Further investigations including cardiac magnetic resonance imaging would be useful in establishing the diagnosis. These observations will help to increase awareness of the possible coexistence of takotsubo syndrome among patients with AMI.

SUPPLEMENTARY MATERIAL

Supplementary material is available at www.mp.pl/kardiologiapolska.

ARTICLE INFORMATION

CONFlict OF INTEREST None declared.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for non-commercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.

REFERENCES

