Combined procedure of thoracoscopic implantation of the epicardial left ventricular lead and removal of the His bundle pacing lead in a patient with heart failure

Authors: Jarosław Bis, Kinga Gościńska-Bis, Rafał Gardas, Łukasz Morkisz, Radosław Gocoł, Adam Kowalówka, Krzysztof S Gołba, Marek A Deja

Article type: Clinical vignette

Received: July 12, 2020.

Accepted: July 31, 2020.

Published online: August 14, 2020.

ISSN: 0022-9032

e-ISSN: 1897-4279

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0), allowing third parties to download articles and share them with others, provided the original work is properly cited, not changed in any way, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at kardiologiapolska@ptkardio.pl.
Combined procedure of thoracoscopic implantation of the epicardial left ventricular lead and removal of the His bundle pacing lead in a patient with heart failure

Jarosław Bis¹,², Kinga Gościńska-Bis³,⁴, Rafał Gardas³,⁴, Łukasz Morkisz¹, Radosław Gocół¹, Adam Kowalówka¹,², Krzysztof S Golba³,⁴, Marek A Deja¹,²

¹Department of Cardiac Surgery, Upper Silesian Medical Centre, Medical University of Silesia, Katowice, Poland
²Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
³Department of Electrocardiology, Upper Silesian Medical Centre, Medical University of Silesia, Katowice, Poland
⁴Department of Electrocardiology and Heart Failure, Medical University of Silesia, Katowice, Poland

Short Title:
Thoracoscopic implantation of the left ventricular lead

Corresponding author:
Jarosław Bis, MD Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland, Ziołowa Street 47, 40-635 Katowice, Poland, tel: +48 32 3598000, e-mail: bisu@mp.pl

Conflict of interest: none declared
A 71-year old man with ischemic heart failure (HF) presented with a failing His bundle pacing (HBP) lead of the cardiac resynchronization therapy with defibrillator (CRT-D) system. He has had the system implanted for 8 years following anterior wall myocardial infarction which resulted in left ventricular ejection fraction (LVEF) reduction to 20% and New York Heart Association (NYHA) class III HF symptoms. Resynchronization therapy substantially improved the patient’s cardiac status with HF symptoms improving to NYHA class I and LVEF increasing to 49%. One year before current admission he had the CRT-D system explanted due to the failure of the defibrillating lead. A new CRT-D system with atrial and defibrillating lead was implanted, however due to the the thrombosed target branches of the coronary sinus the re-implantation of the left ventricular (LV) lead was not possible. Therefore a HBP lead was implanted instead and connected to the LV port of the device to maintain resynchronization therapy. The HBP lead pacing threshold which was acceptable (3.5V/0.5ms) directly after implantation, rose gradually during the following 8 months, ultimately leading to ineffective pacing and return of HF symptoms (NYHA III) and low LVEF (26%).

To restore CRT, a combined procedure of thoracoscopic implantation of the LV lead and HBP lead removal was attempted (Figure 1A-E; Supplementary material, Video S1).

The procedure was performed under general anesthesia with double lumen tube intubation and selective right-lung ventilation. The patient was positioned in 45-degree right lateral decubitus position. Three 10-mm ports were created: two operating ports in the 7th and 10th intercostal spaces in the posterior axillary line and one camera port in the 8th intercostal space in the anterior axillary line. The CO2 insufflation was started to improve surgical visualization.

The pericardium was incised posteriorly to the phrenic nerve to expose the lateral wall of the left ventricle. The MyoPore (Greatbatch Medical, NY, USA) sutureless screw-in epicardial
pacing lead was delivered to the target area with the steerable FasTac Flex (Greatbatch Medical) delivery tool. Before implantation satisfactory pacing and sensing parameters were confirmed by placing the lead in contact with the epicardium. After screwing-in, the lead was tunnelled under the skin to the device pocket in the subclavicular area. The pocket was opened, the HBP lead was disconnected and removed by gentle traction (no mechanical extraction tools were necessary). Subsequently the MyoPore lead was connected to the device and the pocket was closed. At the end of the procedure satisfactory pacing and sensing parameters were recorded (pacing threshold of 1.2V/0.5ms). Total procedure time was 64 minutes, no fluoroscopy was used. The patient was extubated in the operating room, and discharged home on the 4th postoperative day (Figure 1F). The LVEF at discharge echocardiography was 45%.

Beneficial effect of CRT-D in selected patients with ischemic HF has been demonstrated, however optimal LV lead position is paramount [1]. Thoracoscopic placement of the LV lead for CRT is a valuable option when transvenous implantation is impossible [2,3]. The use of deflectable implantation tool greatly improves access to the target area on the LV wall. To our knowledge this is the first report to show that such procedure can be safely combined with the removal of the HBP lead, which is beneficial for the patient and reduces healthcare costs [4].
References:


Figure 1.

A – MyoPore lead on the FasTac Flex delivery tool ready for implantation.

B – MyoPore lead’s tip prior to screwing into the myocardium.

C – MyoPore lead implanted into the lateral wall of the left ventricle.

D – Tip of the removed His bundle pacing lead.

E – Three operating ports used for surgical access.

F – Postoperative chest X-ray showing the outline of the MyoPore lead.

Supplementary material, Video S1: Video clip presenting the key stages of the procedure.